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Capacity Demand is Voracious
High bandwidth-growth geographic areas
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Challenges Scaling TDM to Higher Data Rates

Increased design, component complexity & cost
» Components need to operate at faster speeds -> Increased system cost
> Limited supply of components -> Yield and Reliability issues

Inferior performance to 10G
> 75% reach lost at 40G, 90% lost at 100G
> Addition of RAMAN amplifiers and/or REGENS required (CAPEX)

Cannot operate over existing optimized network
» Replace some ROADMs with Regens (CAPEX)
> Increase cost and time to upgrade

Increased sensitivity to chromatic dispersion
» 16 x worse at 40G, 100 x worse at 100G
> Addition of compensator equipment, amplifiers (CAPEX) and more complex engineering (OPEX)

Increased sensitivity to Polarization Mode Dispersion
> 4 xworse at 40G, 10 x worse at 100G
> Rip and replace bad fiber, addition of compensator equipment (CAPEX), and complex eng. (OPEX)

B I e



Spectral Optimization

Four mechanisms to grow capacity
and increase spectral density

- Challenge the baud rate
- Challenge the bit/symbol
- Challenge carrier spacing
> Polarization diversity
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Encoding Schemes
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Enhancing Spectral Density

while retaining propagation characteristics

Modulation Format
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Key requirements:
> Grid compatibility

Sub-Carrier Mux.
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Propagation characteristics like 10G
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> Cost efficient hardware
> Operational simplicity




Benefits of Coherent Detection

Linear frequency translation from optical to baseband

Correction of impairments

- Allows DSP to process received signal, correcting:
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Electrical transfer functions and path delays
Optical filtering

Chromatic dispersion

Polarization state

Polarization mode dispersion (PMD)
Polarization dependent loss (PDL)
Transients

Channel monitoring

> Access to amplitude, phase & polarization information

Spectral selectivity

> Co-FDM,; colorless optical network egress

Optical gain
> Receiver sensitivity

PIN diode

Local laser
(tuned to channel of interest)




Transmission Properties
Transmitter and wet plant
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Transmission properties
Receiver

Adaptive receiver

> Lower performance variation - reduced margin requirements
(tracking polarization, residual dispersion, and received power)

> Continuous monitoring and reporting of optical layer metrics
(e.g. actual chromatic dispersion and PMD)

> Easy card installation and operational simplicity

11.0

10.5

Std. dev.: 0.03 dBQ

10.0

9.5

Q [dBQ]

9.0

FEC limit

8.5

8.0




100G CoFDM DP-QPSK Submarine Trial

Un-announced trial partner/cable (Gen 1): 2,100 km
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Maximum channel count: 48
Full-fill capacity with 100G: 4.8 Tb/s
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Deployment and Trial Milestones

N x 40G WDM upgrade on repeatered submarine cable
- 50 GHz spacing augmenting existing 10G wavelengths
- Commercial operation

100G WDM upgrade trial on repeatered submarine cable
- 50 GHz spacing augmenting existing 40G wavelengths
- Link distance: ~2,000 km

N x 40G WDM deployment unrepeatered submarine cable
2009 - Virgin Media (UK — Ireland: 238 km/58 dB)
- Commercial operation

100G deployment on unregenerated terrestrial cable

- Verizon network between Frankfurt and Paris (900 km )

- 50 GHz channel spacing with existing 10Gs on link with ROADMs
- Commercial operation

N x 40G WDM upgrade on repeatered submarine cable

- 50 GHz spacing augmenting existing 10G wavelengths

- Commercial operation

- Certified N x 100G as future upgrade w/o reengineering on ~2,300 km
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A Look to the Future — Maximizing Spectral Utility
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Source: “100G and Beyond with Digital Coherent Signal Processing”,
K. Roberts et.al., IEEE Communications Magazine, July 2010
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Submarine Deployment Trends
Upgrades take center Stage

Lower margina| cost Of Number of cables entering service 1998 — 2012
bandwidth

Capacity upgrades diminish new cable deployments

mACiuE mEslimated

< Lower hardware and deployment cost

25
20
> Lower operational cost o
10
2> Maximize utilization of cable assets I I
5 ][

1998 2000 2002 2004 2006 2008 2010 2012
Source:Telegeography

RFS Year Capacity Increase

Atlantic Crossing-1 1998 700%
Australia-Japan Cable 2001 297%
Americas-I| 2000 863%
Pacific Crossing-1 1999 150%
Southern Cross 2000 733%

Source: Global Capacity Demand Drivers & Network Deployment Trends,
13 A. Mauldin (Telegeography), SubOptic, May 2010



Meshing the Submarine cables

Lower marginal cost of bandwidth

> Maximize utilization of cable bandwidth

=

(shared protection across cables)

Lower maintenance cost and cost of
downtime

Enhance value of services

=

=%

=
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Compete on Quality of Services (QoS)
Expand the Classes of Service (CoS)

Network treats individual fibers as survivahle mesh

Fail-safe redundancy across many paths improves capacity

TAT-14 North

TAT-14 South

gy Countries
~ in Europe
4

Wet | Terrestrial

Higher-value application-specific offerings (e.g. international data

center connectivity with latency SLAS)



The Global Network

Architecture evolution

Traditional Architecture

> Discrete network components

PoP/CO

Integrated Architecture

> Submarine/terrestrial WDM integration
~» Simplified management

> Space and cost reduction i
Global Mesh Architecture Landing Station and/or PoP/CO

> Universal ULH Packet/TDM-OTS

> End-to-end provisioning & management
- Global mesh protection & restoration
> Disassociation of wet plant
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