IPv6 Background Radiation

Geoff Huston

APNIC RED

IPv4 Background Radiation

- We understand that the IPv4 address space is now heavily polluted with toxic background traffic
 - Most of this traffic is directly attributable to infected hosts performing address and port scanning over the entire IPv4 address range
 - Average background traffic level in IPv4 is ~5.5Gbps across the Internet, or around 300 600 bps per /24, or an average of 1 packet every 2 seconds
 - There is a "heavy tail" to this distribution, with some /24s attracting well in excess of 1Mbps of continuous traffic
 - The "hottest" point in the IPv4 network is 1.1.1.0/24. This
 prefix attracts some 100Mbps as a constant incoming traffic
 load

IPv4 vs IPv6

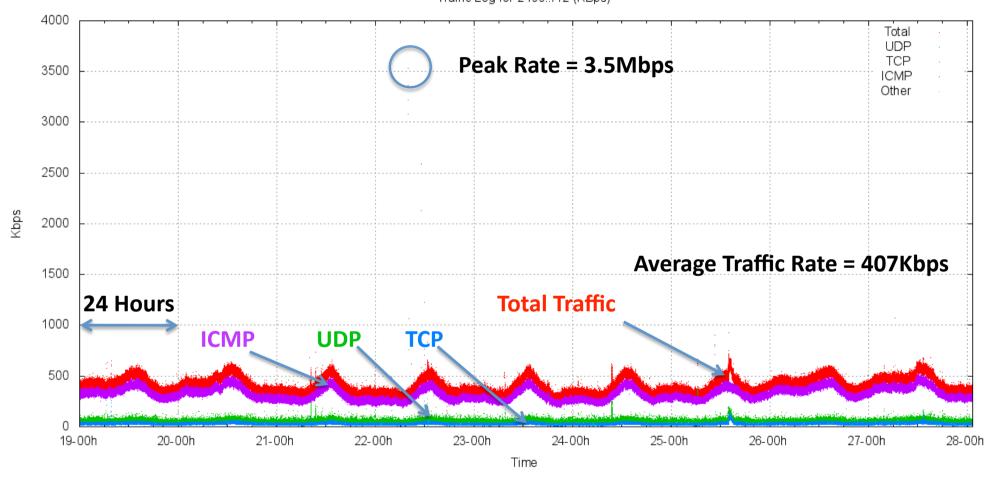
- Darknets in IPv4 have been the subject of numerous studies for many years
- What about IPv6?
- Does IPv6 glow in the dark with toxic radiation yet?

2400::/12

Allocated to APNIC on 3 October 2006

```
Currently 2400::/12 has:
709 address allocations, spanning a total of:
16,629 /32's
71,463,960,838,144 /64's
1.59% of the total block
323 route advertisements, spanning a total of:
9,584 /32's
41,164,971,903,233 /64's
0.91% of the /12 block
```

- **0.91%** of the block is covered by existing more specific advertisements
- 0.68% of the block is unadvertised allocated address space
- 98.41% of the block is unadvertised and unallocated


Advertising 2400::/12

Darknet experiment performed between 19th June 2010 – 27th June 2010

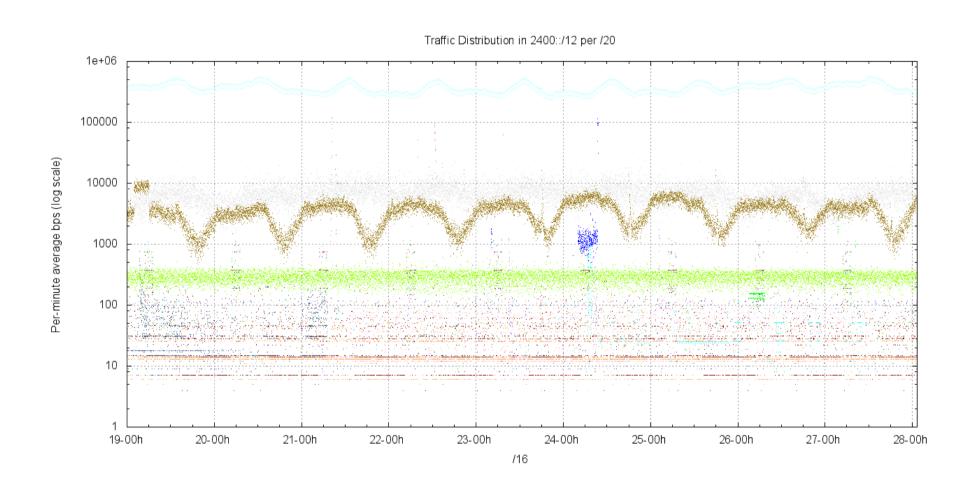
- Advertised by AS7575 (AARNet)
- Passive data collection (no responses generated by the measurement equipment)

Total Traffic Profile

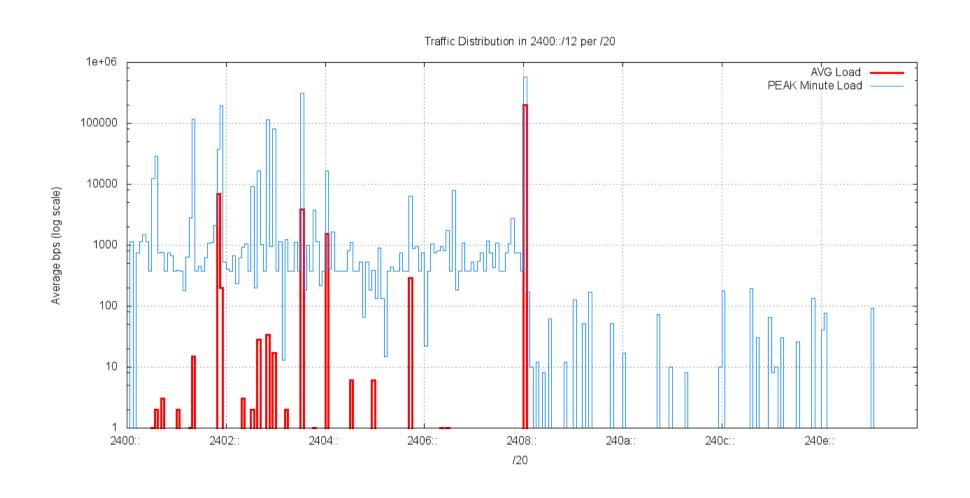
Traffic Log for 2400::/12 (KBps)

Traffic Profile

Average Traffic Rate: 407 Kbps (726 packets per second)


ICMP: 323 Kbps (611 pps)

UDP: 54 Kbps (68 pps)


TCP: 30 Kbps (45 pps)

This is predominately ICMP traffic (destination unreachables being sent to dud addresses – i.e. a double misconfig of both source AND destination).

Destination Address Distribution

Destination Address Distribution

Top 5 /20s in 2400::/12

2408:0000:/20 197Kbps Allocated: 2408::/22 – NTT East, JP

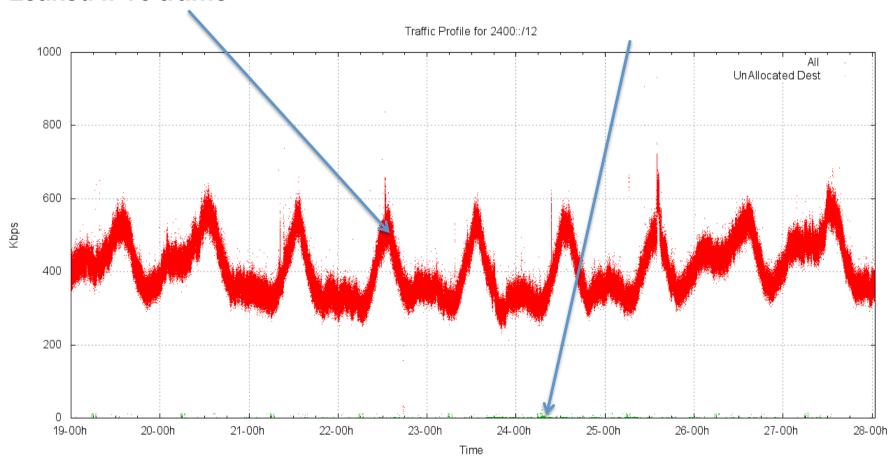
2401:d000::/20 7Kbps 8 x /32 allocations in this block

2403:8000::/20 4Kbps 4 x /32 allocations in this block

2404:0000::/20 1Kbps 29 allocations in this block

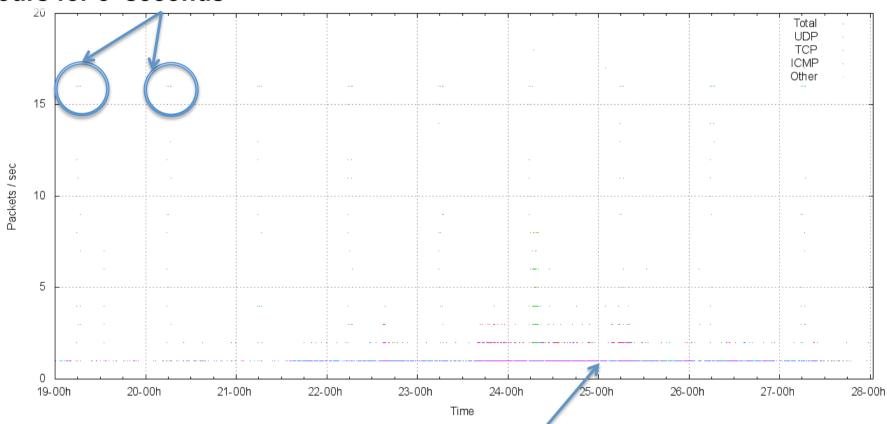
Is This Leakage or Probing?

 There is no direct equivalent of RFC1918 private use addresses in IPv6


(well, there are ULAs, but they are slightly different!)

- In IPv6 it's conventional to use public IPv6 addresses in private contexts
- How much of this "dark" IPv6 traffic is a result of "leakage" from private contexts into the public network?
- Fiter the captured packets using the address allocation data

Allocated vs Unallocated Dark Traffic


Dark IPv6 Traffic

Dark IPv6 Traffic

Yes, that's a pattern of 16 UDP packets per second every 24 hours for 5 seconds

Traffic Log for 2400::/12 (Pps)

less than 1 packet per second of ICMP

Dark IPv6 Traffic Profile

Average Packet Rate:

1 packet per 36.8 seconds for the entire /12

Packet Count: 21,166

ICMP: 7881 (37%)

TCP: 7660 (36%)

UDP: 5609 (26%)

TCP Profile

```
SYN packets: (possibly probe / scanning traffic)
1126
SYN+ACK packets: (wrong source, local config errors?)
6392
Others (Data packets!):
141
```

TCP Oddities

Stateless TCP in the DNS?

(no opening handshake visible in the data collection – just the TCP response data!)

DNS TCP Response:

04:47:06.962808 IP6 (hlim 51, next-header TCP (6) payload length: 1351)

2001:468:1802:102::805b:fe01.53 > 2401:1a19::123:108:224:6.49121, Length: 1319 ACK: 1672186592 WIN 49980

Query: A? finlin.wharton.upenn.edu.

Response: finlin.wharton.upenn.edu. A 128.91.91.59

TCP Probing?

- 13:12:56.528487 IP6 (hlim 44, next-header TCP (6) payload length: 1460) 2001:250:7801:a400::1987:407.33729 > 2402:e968:6000::d27e:4ed:fb5b.2273:., 3207301626:3207303066(1440) ack 3706857348 win 63916
- 01:47:00.122909 IP6 (hlim 44, next-header TCP (6) payload length: 20) 2001:250:7801:a400::1987:407.57777 > 2402:2b75:2100:0:42:dc34:e8f3:52a4.3113:., 272892761:272892761(0) ack 2064800132 win 64800
- 01:50:47.197265 IP6 (hlim 44, next-header TCP (6) payload length: 20) 2001:250:7801:a400::1987:407.57777 > 2402:2f2a:179:341f:d6:dc34:e8f3:52a4.3113: ., 302360250:302360250(0) ack 2091174988 win 64800
- 03:44:39.140290 IP6 (hlim 44, next-header TCP (6) payload length: 20) 2001:250:7801:a400::1987:407.57777 > 2402:a236:6000:0:4d8:dc34:e8f3:52a4.3113: ., 829577701:829577701(0) ack 2622550921 win 64800
- 03:58:23.851708 IP6 (hlim 44, next-header TCP (6) payload length: 20) 2001:250:7801:a400::1987:407.57777 > 2402:9a23:100:2:d6:dc34:e8f3:52a4.3113: .,, 829661294:829661294(0) ack 2702723699 win 64800
- 05:02:52.568996 IP6 (hlim 44, next-header TCP (6) payload length: 20) 2001:250:7801:a400::1987:407.57777 > 2402:1123:1ba:ec05:ef:f2c6:ce35:c40f.1158:., 1365702964:1365702964(0) ack 3293642040 win 64800
- 05:50:43.706430 IP6 (hlim 44, next-header TCP (6) payload length: 20) 2001:250:7801:a400::1987:407.57777 > 2402:76d9:16b:7320:d8:f2c6:ce35:c40f.1158: ., 1409613792:1409613792(0) ack 3600529388 win 64800
- 07:20:15.728521 IP6 (hlim 44, next-header TCP (6) payload length: 20) 2001:250:7801:a400::1987:407.57777 > 2402:6219:4100:0:2b0:dc34:e8f3:52a4.3113: .,, 830692465:830692465(0) ack 3672203022 win 64800
- 08:37:57.505208 IP6 (hlim 44, next-header TCP (6) payload length: 20) 2001:250:7801:a400::1987:407.57777 > 2402:b54e:1cc:e14:52:dc34:e8f3:52a4.3113: .,, 831214068:831214068(0) ack 4169603866 win 64800

Repeated TCP packets, same source addresses and ports, no preceding SYN/ACK TCP handshake, different addresses addresses, small dest port set (1158, 3113, 2273)

TCP Probing, or...?

```
12:44:54.038234 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240a:f000:1405:6001:1cbc:f191:1384:7cde.1597: Flags [S.], seq 3889176058, ack 2381452531, win 8192, length 0 12:44:54.038358 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240b:f000:1685:6001:1cbc:f191:1384:7cde.1597: Flags [S.], seq 3889176058, ack 2381452531, win 8192, length 0 12:44:54.038613 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240c:f000:1905:6001:1cbc:f191:1384:7cde.1597: Flags [S.], seq 3889176058, ack 2381452531, win 8192, length 0 12:44:54.914216 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240c:f000:1905:6001:1cbc:f191:1384:7cde.1597: Flags [.], seq 1, ack 220, win 17080, length 0 12:44:54.914341 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240b:f000:1685:6001:1cbc:f191:1384:7cde.1597: Flags [.], seq 1, ack 220, win 17080, length 0 12:44:54.914466 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240b:f000:1685:6001:1cbc:f191:1384:7cde.1597: Flags [.], seq 1, ack 220, win 17080, length 0 12:49:52.061661 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240b:f000:1685:af01:b469:173f:8bc8:3411.3991: Flags [.], seq 536162733, ack 2327619384, win 16621, length 0 12:49:52.061785 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240c:f000:1905:af01:b469:173f:8bc8:3411.3991: Flags [.], seq 536162733, ack 2327619384, win 16621, length 0 12:49:52.061915 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240c:f000:1905:af01:b469:173f:8bc8:3411.3991: Flags [.], seq 536162733, ack 2327619384, win 16621, length 0 12:49:52.061915 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240c:f000:1405:af01:b469:173f:8bc8:3411.3991: Flags [.], seq 536162733, ack 2327619384, win 16621, length 0 12:49:52.061915 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240c:f000:1405:af01:b469:173f:8bc8:3411.3991: Flags [.], seq 536162733, ack 2327619384, win 16621, length 0 12:49:52.061915 | P6 2001::4137:9e76:28ae:355f:8417:a083.80 > 240c:f000:1405:af01:b469:173f:8bc8:3411.3991: Flags [.], seq 536162733, ack 2327619384, win 16621, length 0 12:49:52.061915 | P6 2001::4137:9e76:28ae:355f:8
```

Same Teredo source address, but varying destination addresses

Self-Misconfiguration

10:56:20.719296 IP6 (hlim 57, next-header TCP (6) payload length: 40) 2001:470:1f04:815::2.25 > 2402:5000::250:56ff:feb0:11aa. 37839: S, cksum 0x79db (correct), 2261394238:2261394238(0) ack 2082559012 win 64768 <mss 1420,sackOK,timestamp 128287793 3737661225,nop,wscale 11>

A mail server at he.net is (correctly) responding to a mail client at the (invalid) address 2402:5000::250:56ff:feb0:11aa. There are sequences of 8 packets paced over ~90 seconds with doubling intervals – typical signature of a SYN handshake failure

This single address pair generated a total of 6,284 packets over 9 days (corresponding to 780 sendmail attempts!)

Dark DNS

Queries: 2,892 queries over 7 days

from just 4 source addresses!

Backscattered Responses: 30

All of these look a lot like configuration errors in dual stack environments. These errors go largely unnoticed because of the fallback to V4 in dual stack.

Dark ICMP

- echo request packets (ping) 7,802 packets
- 93 others destination unreachables, and malformed packet headers

IPv6 Dark Traffic

- Most of the traffic in the dark space is leakage from private use contexts
 - There is a message here to all "private" networks: they really aren't necessarily all that private!
- And a we've seen a small amount of traffic that appears to be a result of poor transcription of IPv6 addresses into system configs and into DNS zone files
- And the use of dual stack makes most of these IPv6 config stuffups go completely unnoticed!

IPv6 Scanning?

- What happens in IPv4 does not translate into IPv6.
- There is no visible evidence of virus scanners attempting to probe into private use and dark address blocks in IPv6
- The nature of IPv6 is such that address scanning as a means of virus propagation is highly impractical
 - That does not mean that IPv6 is magically "secure" far from it it just means that virus propagation via address scanning does not translate from IPv4 into IPv6

Thank You

