An Inconvenient Prefix: Is Routing Table Pollution Leading To Global Datacenter Warming?

Richard A Steenbergen <ras@nlayer.net> Rob Mosher <rmosher@he.net> nLayer Communications Hurricane Electric

NANOG 50 – Atlanta GA

October 4 2010

Global Routing Table Size Over Time

- Oh My God! It's up and to the right! We're all going to die!!!
- Look at that curve! It looks exponential! The Internet is doomed!

Just kidding. Sorry, had to get that out of the way up front.

Why Does Routing Table Size Matter?

- Because everything you announce into the global table is heard by every other BGP speaking router on the planet.
- Larger routing tables use more RAM, FIB space, and CPU.
 - And it's not just about "does the most common low end router have enough RAM and FIB to hold a full table".
 - Most of the Internet is multi-homed at some level, so networks with extensive peering will easily see millions of possible BGP paths.
 - Networks with many POPs will see large numbers of routes in their IBGP core, slowing convergence after a BGP flap or router reload.
 - Even top of the line core routers with the maximum amount of CPU and RAM available for purchase today are becoming stressed.
- And more routes means more potential for BGP churn.
 - Further increasing CPU use and degrading performance.

Global Routing Table Size Over 240 Days

So Where Are All These Routes?

Distribution of IPv4 Routes by Prefix Length

Drivers Behind Routing Table Growth

Theories Behind Routing Table Growth

- What is behind the ever-increasing size of the routing table?
- Many theories have been suggested.
- But let's examine the 4 most common:
 - "More networks are multi-homing, putting more routes into BGP".
 - "Slow growth allocation methods cause fragmentation".
 - "It's all being done for traffic engineering purposes".
 - "Large numbers of networks are redistributing routes into BGP".
 - "People are just being stupid with their configurations".

Theory: More Networks Are Multihoming

- True. But there are still only around 35K active ASNs, or around 1/10th the number of routes in the global table.
- Growth is also very linear.

Distribution of Routes by ASN Size

- Small ASNs (under 20 routes each) are:
 - 86.5% of the total active ASNs (those which announce any routes)
 - But less than 33% of the routes in the global routing table.

Distribution of Routes, by Number of Routes Per ASN

Theory: Slow Growth Causes Fragmentation

- True. If not for fragmentation, every ASN would need only one route, and the routing table would only be ~35K.
- Remember, this occurs at multiple levels:
 - An ISP gets slow growth allocations from a RIR.
 - The ISP's customer gets slow growth allocations from the ISP.
 - Their customers may get slow growth allocations from them...
- And not every network manages long term growth well.
 - Large, smart, efficient networks with proper documentation and a clear pattern of growth can easily justify a /11 at a time from a RIR.
 - But poorly managed networks may find it much "easier" to get a /24 at a time from their providers, once a month, for the next 10 years.
 - How many people here have customers who ask for "20 Class C's"?
 - Unfortunately this doesn't just harm that network, it harms everyone.

Theory: Slow Growth Causes Fragmentation

- It's difficult to calculate exactly how much bloat this causes.
- But it sure is easy to find examples in the routing table.
 - This particular example is a hosting company announcing 129 /24s, all with the same AS-PATH, and all from their provider's aggregates.
- As IPv4 runs out, efficient allocation will become even harder.

A Real Life Fragme	ntation Example (Oc	tets Changed to Pro	tect the Gulity)
xxx.62.137.0/24	xxx.62.196.0/24	xxx.82.4.0/24	xxx.82.35.0/24
xxx.62.140.0/24	xxx.62.201.0/24	xxx.82.6.0/24	xxx.82.43.0/24
xxx.62.144.0/24	xxx.62.253.0/24	xxx.82.7.0/24	xxx.82.44.0/24
xxx.62.159.0/24	xxx.71.167.0/24	xxx.82.8.0/24	xxx.82.55.0/24
xxx.62.160.0/24	xxx.71.174.0/24	xxx.82.10.0/24	xxx.82.57.0/24
xxx.62.175.0/24	xxx.71.185.0/24	xxx.82.11.0/24	xxx.115.2.0/24
xxx.62.191.0/24	xxx.71.193.0/24	xxx.82.24.0/24	xxx.115.4.0/24

Theory: It's All Traffic Engineering

- A lot of it is, particularly for inbound-heavy networks.
 - An ISP may get a /11, but often carves it up into ~/19s per market.
 - And they usually want their transit provider to haul it to the right POP.
- It can also be difficult to detect from an outsiders' view.
 - When each market is originated by its own ASN, it's easy.
 - But you can't see differing BGP nexthop attributes from the outside.
- It's difficult to know exactly how much bloat is caused by TE
 - But it's clearly responsible for the top offenders on the CIDR Report.

		inclusing g.	necount	/0 0000	Description
Table	338051	208556	129495	38.3%	All ASes
AS6389	3776	282	3494	92.5%	BELLSOUTH-NET-BLK - BellSouth.net Inc.
AS4323	4479	1945	2534	56.6%	TWTC - tw telecom holdings, inc.
AS19262	1822	286	1536	84.3%	VZGNI-TRANSIT - Verizon Online LLC
AS4766	1861	519	1342	72.1%	KIXS-AS-KR Korea Telecom
AS22773	1199	66	1133	94.5%	ASN-CXA-ALL-CCI-22773-RDC - Cox Communications Inc
AS4755	1357	290	1067	78.6%	TATACOMM-AS TATA Communications formerly VSNL
AS17488	1347	297	1050	78.0%	HATHWAY-NET-AP Hathway IP Over Cable Internet
AS18566	1087	63	1024	94.2%	COVAD - Covad Communications Co.

Snum NetsNow NetsAggr NetGain % Gain Description

Traffic Engineering: Bellsouth

Aggregate Prefixes	# of More Specific Prefixes
65.0.0/12	302
65.80.0.0/14	165
66.156.0.0/15	21
66.20.0.0/15	88
67.32.0.0/14	69
68.152.0.0/13	256
68.16.0.0/14	117
68.208.0.0/12	329
70.144.0.0/12	373
72.144.0.0/12	195
74.160.0.0/11	272
74.224.0.0/11	345
98.64.0.0/11	94
184.32.0.0/12	16
216.75.0.0/14	164
Total	2806

Traffic Engineering: Time Warner Telecom

Aggregate Prefixes	# of More Specific Prefixes
64.132.0.0/16	59
66.192.0.0/14	659
97.65.0.0/16	47
173.226.0.0/15	126
174.46.0.0/15	66
206.169.0.0/16	52
207.67.0.0/17	79
207.235.0.0/17	62
207.250.0.0/16	168
209.12.0.0/16	50
209.136.0.0/16	39
209.163.128.0/17	67
209.234.128.0/17	75
216.54.128.0/17	98
216.136.0.0/16	39
Total	1686

A Technique to do TE Without Pollution

Internet

Provider Aggregate Route More Specific Originator

Internet

- Tag your more-specifics with No-Advertise.
- Allow the aggregates to propagate normally.
- The aggregate draws traffic to your provider.
- Once there, the more-specifics kick in and perform their traffic engineering function.
- Your provider still deals with the increased routes, but the rest of the Internet is spared.
- This can also help reduce BGP route churn!

Theory: Lots of Redistribution

- Looking at routes with an Unknown BGP Origin Code:
 - These account for 31K (or around 9%) of the global table.
 - A bit higher % of /24s, but not wildly different from the global view.

Distribution of Prefix Lengths

Theory: People Are Just Being Stupid

Worst offenders: Routes with the same origin ASN, by count per /16

/16 Block	Route Count	Origin ASN	Country
186.42.0.0/16	226	14420	Ecuador
72.27.0.0/16	219	10292	Jamaica
94.20.0.0/16	215	29049	Azerbaijan
125.99.0.0/16	213	17488	India
60.243.0.0/16	208	17488	India
116.72.0.0/16	205	17488	India
220.227.0.0/16	204	18101	India
190.152.0.0/16	204	14420	Ecuador
116.74.0.0/16	202	17488	India
190.131.0.0/16	192	27738	Ecuador
41.235.0.0/16	183	8452	Egypt
66.192.0.0/16	182	4323	United States

Can We Identify Deaggregates Automatically?

Routes Per /16 With The Same Origin ASN

Breakdown of Deaggregates By Country

Deaggregates as Percentage of Total Routes

Some Random Funny Bad Routes

7018 Originating Starbucks' 98.96.0.0/14, One /24 At A Time					
98.96.41.0/24	98.97.114.0/24	98.97.142.0/24	98.97.155.0/24		
98.96.74.0/24	98.97.116.0/24	98.97.143.0/24	98.97.156.0/24		
98.96.86.0/24	98.97.117.0/24	98.97.144.0/24	98.97.160.0/24		
98.96.100.0/24	98.97.118.0/24	98.97.149.0/24	98.97.161.0/24		
98.96.108.0/24	98.97.131.0/24	98.97.150.0/24	98.97.162.0/24		
98.96.149.0/24	98.97.140.0/24	98.97.152.0/24	98.97.164.0/24		
98.96.247.0/24	98.97.141.0/24	98.97.154.0/24	98.97.168.0/24		

The Impact of IPv6 On The Routing Table

Routes vs. ASNs, v4 and v6 Comparison

Question: Is Deaggregation Increasing?

Change in Number of Routes, by Prefix Length (240 Days)

Send questions, comments, complaints to:

Richard A Steenbergen ras@nlayer.net