Building A Cheaper Peering Router

(Actually it's more about buying a cheaper router and applying some routing tricks)

Tom Scholl <tscholl@nlayer.net>

nLayer Communications, Inc.

What's this all about?

- Network infrastructure can be expensive.
- One of the most common issues encountered when networks needs peering upgrades are the router ports themselves.
 - If not for your network, than for the network you want to peer with.
 - No ports available, not enough space and/or power for new boxes.
 - Price of ports is an issue, especially when non revenue generating.
- 10GigabitEthernet is the current standard for interconnection.
 - And many smart networks have moved from SONET capable routers (GSR, CRS, T-series, etc) to "Ethernet-centric" boxes for peering.
 - But peering routers are still a significant expense.
 - And many existing peering edge routers are running out of steam in terms of ports, density, etc.

Vendors have reacted to this need

- Historically you had very expensive core routers
 - Cisco GSR and CRS
 - Juniper T-series
 - etc.
- And very cheap but somewhat feature limited customer boxes.
 - Cisco 6500
 - etc.
- Vendors have also created a "middle tier" in features and price
 - Juniper MX
 - Cisco 7600 with ES cards
 - Cisco ASR 9000
 - Foundry MLX/XMR
 - etc.

This is nice...but...

- In the last few years there's been an explosion of much cheaper and denser 10 Gigabit Ethernet boxes.
 - Targeted at the datacenter / top-of-rack role.
 - Supporting only datacenter optics (SFP+ only, nothing long reach).
 - Sometimes lacking large packet buffers.
 - Lacking many advanced features an ISP might want.
 - And often using outsourced routing ASICs ("commodity silicon")
- But they've got some pretty neat characteristics too:
 - Small boxes (1U or 2U) with 24 or 48+ port 10GE density.
 - Larger boxes with support for 16-32 slots of Nx10GE cards.
 - And SFP+ optics CAN significantly reduce infrastructure costs.

What are some of these boxes?

- Cisco ASR9K
 - Based on EZchip chips
- Juniper EX
 - Based on Marvell chips
- Dell
 - Based on Broadcom chips
- Force10
 - Based on Broadcom chips
- Foundry/Brocade
 - Based on Broadcom chips
- Arista
 - Based on Fulcrum chips

Could these cheap boxes have a viable role in a service provider network?

- Your existing vendors will strongly suggest no, obviously ③
- There's a few challenges preventing you from doing this:
 - Limited FIB size
 - Internet is ~330,000 routes, these boxes can do maybe ~12,000
 - Lack of QoS features
 - Hierarchical QoS? At best, maybe 4 queues per interface
 - Some of these boxes lack any kind of decent software
 - You like pipe and regex? Ha...
 - Access-Lists / Packet Filters
 - Protecting your network is important
 - Lack of forwarding features
 - MPLS? IPv6? You should be happy with IPv4.
- But maybe not all of these features are hard to implement...

Getting around FIB constraints

- Separation of the RIB vs. FIB is critical.
 - The RIB holds information from the routing protocols (BGP, IGP).
 - The FIB holds the final table used for forwarding packets.
- We'll need to have a large RIB, since we'll need to exchange lots of BGP routes with neighbors (transits, peers, customers)
- Fortunately RAM is cheap, and even the 1U boxes are shipping with 1GB of DRAM, so this is less of a problem.
- The key is to not install every single route in the FIB, only what you *need* should be there.

QoS?

- How many people use QoS extensively within their network?
- Most networks focused on transporting bits across the Internet generally arent the major consumers of heavy QoS functionality.
- People selling multi-services (L2VPN, L3VPN, Transit, etc) on a converged network are.
 - (Those people are typically telcos and large carriers)
- The simple QoS features these devices have should be sufficient or not a show stopper.

Lack of forwarding features?

- As these boxes were destined for the datacenter, they're devoid of features used by most service providers.
- But one application driving datacenter boxes is Cloud...
 - And cloud applications require the ability for servers to talk to each other across networks larger than what L2 would be reasonable for.
- This is driving vendors to support more modern L2 networks.
 - TRILL
 - 802.1aq (Shortest Path Bridging)
 - MPLS VPNs (e.g. VPLS)
- Much of this is still on the roadmap, but there is significant demand and support for implementing it.

Packet Filters

- It's a pretty critical requirement to have some sort of ACLs on your edge to prevent bad things:
 - Protect your infrastructure
 - Protect your customers
 - Hello packet police? Yes, our IRC server is getting attacked and...
- At best expect simple packet filters up to layer 3 or 4.
- Don't expect logging or complex matches
 - Packet length, policing, IP options are probably out the window
- Focus on filtering packets towards infrastructure and perhaps a combination of Null routing portions of infrastructure space you don't want packets going.

Decent software?

- Many cheap 1U/2U boxes have really horrible software code.
- This is because chip manufacturers don't know the first thing about writing good software for routers.
 - And why should they? It's not their area of expertise.
 - Can you imagine if Intel had to write your computer's OS?
- Some vendors will just ship the reference software.
 - Dell, Force10 S50, etc.
 - Most try to duplicate Cisco IOS, but at a 1st grade level.
- Other vendors will modify their existing OS to control the 3rd party ASICs.
 - Cisco, Juniper, Foundry/Brocade, etc.

Decent software? (cont'd)

- The OpenFlow project is particularly interesting here.
 - Allows developers to write third party software to control the router.
 - This removes the dependency that every router must have a decent control plane and software running on it.
 - Instead, you write your control plane and run it off-router, then push the FIB results to the hardware.

What's unique about this approach?

- To pull off routing without a full table, we're going to rely upon BGP Unicast-Label.
- BGP Unicast-Label is another BGP address-family, similar to IPv4 unicast, IPv6 unicast, etc.
- What is unique about BGP Unicast-Label is that it allows you to allocate a MPLS label for a prefix.
 - This is similar to how LDP and RSVP allocate labels.

So lets try a little experiment...

- For testing purposes, we're working on a Juniper EX4500
 - Line rate 48x10GE in 2U, 12K FIB, 1GB of DRAM.
- Step 1: Hang it off something "smart"
 - Our cheap box is a stub that hangs off of a larger core router.
 - Assume that Core router has a full table and our little 1U box will handle links to peers, transit and customers.
- You only really need to do this if you need a route of last resort and your small cheap box can handle encapsulating traffic in some protocol (GRE, MPLS, etc)

Participate in the IGP

- Step 2: Establish IGP adjacencies
- This is critical for a few reasons:
 - We want BGP next-hops visible when we advertise routes via BGP
 - Passing IGP costs into BGP MED
 - BGP next-hop validation/reachability
 - Link-liveliness detection with the rest of the network
- A well designed IGP has a small number of routes anyways.

Split the RIB from FIB

- Step 3: Define what routes you want installed in the FIB
 - On Juniper this is done in the "forwarding-table export" policy.
- Some ideas:
 - Directly connected interfaces
 - It's directly connected, you probably want to know you can forward to it
 - IGP routes
 - ISIS or OSPF
 - Internal / Customer networks
 - Match on BGP community
 - Default-Route pointing internally
 - Questionable Depends if you trust your peers

Establishing iBGP connectivity

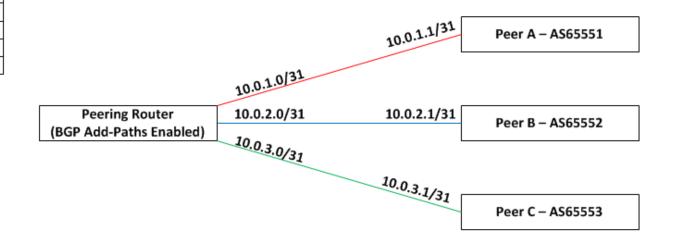
- Step 4: Bring up BGP internally
- Utilize BGP Add-Paths
 - Allows you to advertise multiple paths for the same prefix, not just the single best path.
- This is a new feature, but a very cool one.
 - Has a significantly higher memory footprint, but you can control what routes you want to advertise duplicates of.

Next-Hop Tricks

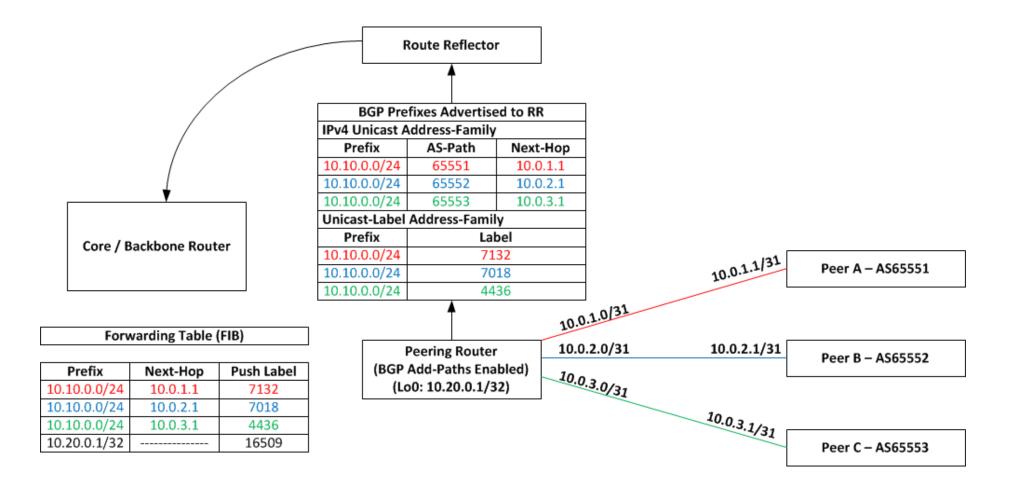
- Step 5: Use BGP Unicast-Label + MPLS to bypass lookups
- Advertise each peer point-to-point as into iBGP with a unicast-label.
 - Redistributing directly connected (/30s for example) only originates implicit-null labels, which is useless.
 - You can however generate a /32 static route of the peers IP address with a next-hop of the peers /32 address:

route 69.22.173.26/32 next-hop 69.22.173.26; route 69.22.173.5/32 next-hop 69.22.173.5;

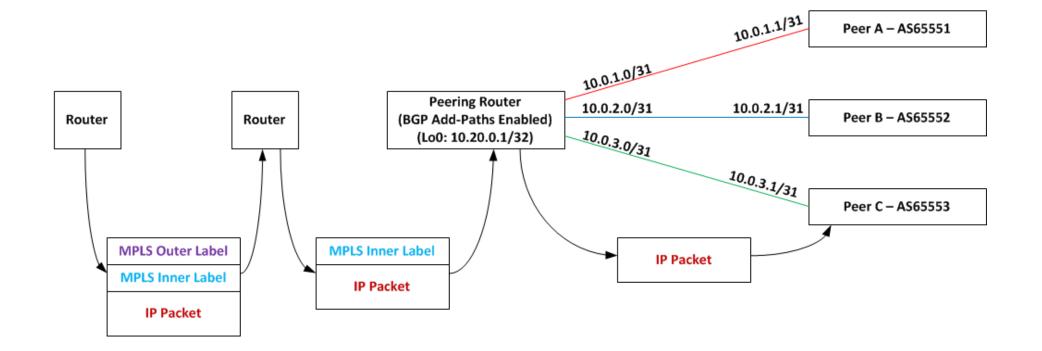
Yes, it looks funny but it works.


Next-Hop Tricks

- When you learn routes from a peer/customer/transit, do not rewrite BGP next-hop-self.
 - Advertise the true next-hop (remote end of a /30)
- IP lookup is bypassed as you are performing a MPLS label operation
 - POP and forwarding traffic out the egress interface


Example: RIB & FIB

Routing Table (RIB)		
Prefix	AS-Path	Next-Hop
10.10.0/24	65551	10.0.1.1
10.10.0/24	65552	10.0.2.1
10.10.0/24	65553	10.0.3.1


Forwarding Table (FIB)		
Prefix / Label	Egress Interface	
7132	xe-0/0/1	
7018	xe-0/0/2	
4436	xe-0/0/3	
10.0.1.1/31	xe-0/0/1	
10.0.2.1/31	xe-0/0/2	
10.0.3.1/31	xe-0/0/3	

Advertising routes back to the network

Packet Flow

Examples

show route table mpls.0:

300064 *[VPN/170] 1d 12:18:12 > to 69.22.173.26 via ae1.80, Pop 300080 *[VPN/170] 1d 11:30:51 > to 69.22.173.5 via ae1.71, Pop

Examples

Next-Hop: 69.22.173.26 (Label 300064)

- 4 xe-3-0-0.cr1.ord1.us.nlayer.net (69.22.142.74) 124.127 ms 93.544 ms 93.526 ms
 MPLS Label=455769 CoS=0 TTL=1 S=0 ← Outer Label
 MPLS Label=300064 CoS=0 TTL=4 S=1 ← Inner Label
- 5 xe-2-0-0-91.mx240-1.lab1.nlayer.net (69.22.173.34) 94.030 ms 101.947 ms 108.593 ms MPLS Label=300064 CoS=0 TTL=1 S=1 ← POP
- 6 10.251.1.2 (10.251.1.2) 95.773 ms 96.924 ms 95.972 ms

Next-Hop: 69.22.173.5 (Label 30080)

- 4 xe-3-0-0.cr1.ord1.us.nlayer.net (69.22.142.74) 99.206 ms 93.627 ms 97.893 ms
 MPLS Label=455769 CoS=0 TTL=1 S=0 ← Outer Label
 MPLS Label=300080 CoS=0 TTL=4 S=1 ← Inner Label
- 5 xe-2-0-0-91.mx240-1.lab1.nlayer.net (69.22.173.34) 98.022 ms 104.927 ms 101.347 ms MPLS Label=300080 CoS=0 TTL=1 S=1 ← POP
- 6 10.251.1.2 (10.251.1.2) 103.776 ms 95.709 ms 95.911 ms

What about inbound traffic?

- That depends on the network.
- If your "internal routes" are larger than the FIB of your cheap router, you're going to have to cheat.
 - By cheat, I mean point a default route to the next upstream router.
 - You can also point this to another router elsewhere in the network that has a full table (anycast "helper routers" as it were).
- If your internal routes are few, you can simply install those into the FIB.
- The problem with the default is you are at risk for someone pointing static routes at you.

Wow, does this really work?

• It looks like it does...

> show route table mpls.0

mpls.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

- 0 *[MPLS/0] 6w2d 04:10:23, metric 1 Receive
- 1 *[MPLS/0] 6w2d 04:10:23, metric 1 Receive
- 2 *[MPLS/0] 6w2d 04:10:23, metric 1 Receive
- 1000001 *[MPLS/6] 03:37:35, metric 1 > to 69.22.173.17 via xe-0/0/9.0, Pop
- 1000001(S=0) *[MPLS/6] 02:08:27, metric 1
 - > to 69.22.173.17 via xe-0/0/9.0, Pop
- 1000002 *[MPLS/6] 03:35:25, metric 1
 - > to 69.22.173.21 via xe-0/0/11.0, Pop
- 1000002(S=0) *[MPLS/6] 03:35:25, metric 1
 - > to 69.22.173.21 via xe-0/0/11.0, Pop

Failboat

• ...but doesn't:

[271451] mrvl_rt_entry_create: MRVL_RT-vrf:0 rt:1000001 [271466] mrvl_rt_entry_install: MRVL_RT-vrf:0 rt:1000001, action:0 [271467] mrvl_rt_entry_construct_Itt_entry: MRVL_RT-1000001 [271470] mrvl_rt_entry_populate_Itt_entry: MRVL_RT-rt_nh tbl entry idx:25 entry count:1 type:unicast [271471] mrvl_rt_mpls_Itt_install: MRVL_RT-mpls Itt install device 0, entry 3277 [271472] mrvl_rt_mpls_Itt_install: MRVL_RT-mpls Itt install device 1, entry 3277 [271474] mrvl_rt_regular_mpls_entry_install: mpls rt tti_set failed: 5 [271481] mrvl_rt_entry_create: MRVL_RT-vrf:0 rt:1000001(S=0) [271487] mrvl_rt_mpls_entry_create: MRVL_RT-rt:1000001(S=0) nh: 0

Output from pfem daemon crashing after executing some choice show commands.

Almost there...

- Most of the pieces are there to do this:
 - BGP Add-Paths to give you multiple BGP path visibility
 - RIB/FIB separation so you can operate BGP with peers, route full tables, full policy controls
- It is feasible to do this on other Juniper gear that actually support MPLS.
 - Working examples given on a MX240
- It works on some Cisco boxes, too.

But there is hope

- MPLS support should be coming in future Juniper EX models
- Other merchant silicon boxes should have some MPLS support hopefully within the next year
 - Don't expect great MPLS software implementations of RSVP, LDP.
 - May have to rely upon static/nailed up LSPs
 - Routing protocol functionality (BGP, OSPF, ISIS) may not be all there.
 - Juniper EX used as an example as it does the routing part fairly well.
- An open item is how well will these cheap boxes handle lookups and MPLS actions (push/pop/swap).

Send questions, comments, complaints to:

Tom Scholl tscholl@nlayer.net