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Network Transparency
And Network Debugging
 How do you know what the network actually is?

 Network Transparency: What does the network really do 
to the data?

 What is not working?
 Network Debugging: Is there something wrong that 

needs to be fixed
 We desired a comprehensive tool for multiple roles

 An easy to use network survey for everyone
 Over 110,000 executions to date

 A detailed diagnostic and debugging tool for experts
 Thus we built Netalyzr, a network debugging and 

diagnostic tool which runs in the web browser
 Just two mouseclicks

2



Inside the Netalyzr Kreibich,  Weaver, Nechaev and Paxson

Key Insights Behind Netalyzr
 Java applets can perform a lot of activity by default:

 Can use arbitrary TCP and (usually) UDP connections to the 
server hosting the applet

 Can lookup arbitrary DNS A (address) records, but the result can 
only resolve to the hosting server’s IP or generate a security 
exception

 Java applets can do even more when “trusted” (the 
signature is accepted by the user)
 Bypasses same origin for both DNS and connectivity

 Javascript can do other things
 Load third party images and validate success
 Examine DOM to see if its in an iframe

 And our servers can do whatever it wants
 Any services, including deliberate protocol violations
 Raw packet examination 3
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Netalyzr’s Architecture
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Netalyzr’s Test Suite
 Network Address Translation:

 Is there a NAT?
 Is the NAT a DNS proxy?

 Is it an open DNS proxy?
 How are ports renumbered?

 Network Link Properties:
 Network latency and bandwidth
 Network buffering
 Path MTU discovery and potential path MTU problems

 Port Filtering:
 What major TCP and UDP ports have outbound port filters?
 What major TCP and UDP ports have protocol aware 

behavior?
 A network device which enforces protocol semantics

5



Inside the Netalyzr Kreibich,  Weaver, Nechaev and Paxson

Netalyzr’s Test Suite Continued
 HTTP tests

 Is there an HTTP proxy or cache?
 If so, does it operate correctly?

 Are various filetypes modified or blocked in the network?
 Is the test run from within an unauthorized iFrame?

 DNS tests
 DNS server identification
 Support for EDNS, glue policy, IPv6
 DNS port randomization
 DNS transport issues
 Lookups of popular names
 DNS wildcarding of invalid names

 Misc items
 IPv6 support
 Clock drift
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Significant Usage
 Released in public beta during the summer of 

2009
 Non-beta (and enhancements) January 2010
 Over 110,000 unique sessions to date

 Results are through June 2010
 Some significant biases

 Comcast is significantly overrepresented with 11%
 Due to initial slashdotting’s article context

 OpenDNS is significantly overrepresented with 12%
 Suggests overall a significant “geek” bias
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NAT Detection
 NAT detection is relatively straightforward

 A TCP connection in Java can (usually) obtain the link local IP 
address and local TCP port number

 The remote server returns the IP address and port number 
used to contact the host

 Uses this to discover NAT properties
 Presence, port # rewriting
 As expected, 90% of sessions are behind a NAT

 Also probes the NAT for DNS proxies
 67% of NATs showed a DNS proxy, which matches expectation

 Can’t tell whether this is the DNS settings returned to the client
 4.4% of sessions accept and fully process an external DNS 

request
 We heard reports of this being rather common: a source of reflectors and 

DNS probes 8
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Detecting Protocol-Aware
Network Devices
 The port filtering tests (except for HTTP and UDP DNS) 

connect to our custom echo server with simply returns the 
IP and SRC port

 Observed behavior can deduce network policy
 If the response is received as expected:

No filtering on this port
 If the IP address has changed:

This port or system routes through a proxy or multiple IP 
addresses, or changed its IP address during the test

 If the connection fails:
This port is blocked somewhere in the network

 If the connection succeeds but different data is returned:
This port passes through a declared proxy

 If the connection succeeds but no data is returned:
The request or response was blocked by a network device that 
is probably protocol aware 9
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Port Filtering Results
 A few surprises:

 Local POP proxies surprisingly common (often on the host itself)
 7% reject our protocol violation, and another 6% of sessions captured a 

proxy’s banner
 Many NATS include FTP proxies 

 20% show FTP interference
 SIP-aware network devices surprisingly common as well 

 5% reject our protocol violation
 Less outbound SMTP filtering than we expected 

 25% blocked, 8% reject the protocol violation
 Suggests that many ISPs are using dynamic blocking of spam-bots

 Expected Results: 
 Port 443 is almost completely unmolested (2% showed 

blocking, .3% rejected the protocol violation)
 Windows Port blocking very common
 Slammer blocks still common 10
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Measuring DNS filtering
 Applet sends several probe requests over UDP port 53 to the 

back-end server for both legitimate and illegitimate requests
 Filtering surprisingly common:

 11% of sessions reject “non DNS” over DNS
 Open Question: How will such devices react to DNS extensions and unknown 

RRTYPEs?  
How flexible is DNS?

 DNS proxies are rare however, only 1.2%
 Direct checks using EDNS (Extended DNS) records of 

various sizes
 1.3% fail the small test (network can’t handle EDNS)
 4.5% fail the medium test (additional cause: network assumes DNS 

<= 512B)
 14% fail the large test (additional cause: fragmentation issues)
 Significant problem for DNSSEC validation on the client
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DNS Server Tests
 DNS glue policy

 How do DNS resolver react to additional records in 
replies
 Special names in our DNS server return different values when 

fetched directly
 Do DNS servers request DNSSEC records
 Can fingerprint DNS resolvers

 32% of sessions show BIND’s default policy

 Actual DNS MTU
 Many (~10%) of DNS resolvers which advertise the 

ability to receive large responses can’t actually receive 
fragmented traffic!
 Will be a potential problem with DNSSEC, as DNSSEC-enabled 

replies may exceed 1500B 12
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DNS Wildcarding
 Disturbing relatively recent trend:

 Instead of NXDOMAIN errors, return a “helpful” address of a 
web server instead

 Three ways to do it:
 Bad:  Wildcard anything that is www.*.com and related

 Comcast, Verizon
 Even worse: Wildcard everything

 Charter, Qwest
 Even worser: Also wildcard SERVFAIL

 OpenDNS

 28% show wildcarding
 Excluding Comcast and OpenDNS: 21% show wildcarding

 You can’t trust NXDOMAINs to be NXDOMAINs 
anymore! 13
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DNS Man-in-the-Middle
 The applet looks up a large number (~70) names on the client, returning 

the results to the server
 The server then performs reverse lookups to validate

 Three major strains of maliciousness discovered, beyond using DNS for 
blocking and NXDOMAIN wildcarding
 Annoying: OpenDNS

 OpenDNS acts as a Man-in-the-Middle for www.google.com, redirecting all traffic through a 
proxy they control
 It is disclosed, but they don’t talk about it much

 Really questionable: Wide Open West and a few other ISPs
 Acts as a Man-in-the-Middle for www.google.com, redirecting traffic through a custom proxy

 Proxy when given bad input refers to phishing-warning-site.com, a parked domain
 Downright criminal: Malicious DNS resolvers

 Malcode sets users to point to a malicious resolver
 Redirects windowsupdate.microsoft.com to a google IP address
 May redirect ad.doubleclick.net to serve adds for products such as “ViMax Male 

Enchancement”

 All these problems are due to the recursive resolver itself:
 DNSSEC validation must be on the end client...

But as we saw earlier, 14% of the clients measured would have problems with this!
14
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Fragments and 
Path MTU Discovery
 Fragments are a big problem

 Tested by sending or receiving a large UDP datagram
 8% of sessions can’t send UDP fragments
 8% of sessions can’t receive UDP fragments
 Those who can send fragments may have an MTU hole: 

3% of sessions which can send 2000B fragments can not send a 1500B packet!
 The network is mostly but not all Ethernet (83% use the Ethernet MTU)

 A significant amount still uses PPPoE (MTU 1492, 13%)
 ICMP reporting unreliable:

 Only 61% of sessions where an ICMP “too big” should have been generated 
actually generated one

 Conventional Wisdom is correct:
 The Network has decreed that fragmentation doesn’t work
 Path MTU discovery must use fallbacks when ICMP isn’t received

 Linux bug: uses “Path MTU discovery” on UDP traffic, by setting the DF bit on UDP packets
Creates a UDP Path MTU hole, as even when the ICMP is generated, it causes Java to 
raise an exception
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What are your questions?
 What do you wish to know about the end-user 

connections that you don’t already?
 Netalyzr is not a static project, but undergoes 

continuous enhancements
 In particular, what are your IPv6 concerns?

 Both for systems and for web browsers?
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Conclusions...
 It worked!

 We discovered a lot about how the edge of the 
Internet really behaves

 A small group can build a robust and comprehensive 
network measurement and diagnostic tool
 You know you built your architecture right when your sysadmin 

asks you “so when is it going up on Slashdot” and your answer 
is “its been up for an hour”
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Information About
Other Tests
 Slides about other tests of potential interest
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HTTP Proxies
 Does the web browser use a proxy?

 The Java high level API routes requests through the web browser 
itself

 Our web server adds an HTTP header which indicates client source 
address

 The applet then constructs requests using a direct TCP port 
80 connection
 To a web page which HTTP encodes the headers used in the 

request
 Any change in the headers indicates a mandatory HTTP proxy

 Including CaPitAlization changes: HTTP headers are case insensitive but 
many devices will transcode HTTP header capitalization

 Also generates deliberately invalid requests
 8.6% show some evidence of proxying

 90% of sessions with proxying are mandatory HTTP proxies
 HTTP proxies are common enough
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More HTTP tests
 Generates a deliberately invalid request

 In-path proxies may reject as invalid, 4% of all sessions
 Fetches four test files using a direct HTTP connection

 1% failed to get the .exe, .7% failed to get the .mp3
 1.2% failed to get the .torrent
 10% failed to get the EICAR “test virus”

 Sends a request to our server, but with the host set to www.google.com
 Checks for a vulnerability in in-path HTTP

proxies which will instead redirect the request
violating same-origin protections, very rare (except
in New Zealand!)

 Fetches a common test image with 
different caching headers
 Image alternates between two 

versions with the same size but
different color maps

 5% show caching, but no major US ISP does caching
 Caches happen, and when they do, they are often broken!

 Transcoding very rare
20
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JavaScript Tests
 Is the test run from within an iFrame?

 Fetches a 0x0 “image” with the Javascript accessible 
cookies and whether this is the top-level iFrame encoded 
in the “fetched” image’s URL
 Overall, very rare: mostly airports or similar hotspots

 Does the host have IPv6?
 We don’t (currently) have any IPv6 servers for Netalyzr
 In a hidden <div>, the analysis page loads the logo from 

ipv6.google.com
 Bind Javascript to success and failure

 Success and failure report results back with another 0x0 
image “fetch”: 4.5% of sessions were able to get the image
 Could be cached from previous IPv6 access
 IPv6 is slow to adopt, even amongst the technically savvy
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Network Buffering
 These measurements are done using UDP, not TCP

 Eliminates TCP performance artifacts
 Wish to stress the network

 For 10 seconds
 Send large UDP packets to our server

 The server’s responds to each packet with a small reply
 Ramp up the sending rate with exponential doubling

 For each packet received, send two more
 Measure the bandwidth and additional latency for each 

packet during the last 5 seconds of this process
 Detects both the bandwidth and estimates the capacity of the 

bottleneck packet buffer
 Wait an additional 5 seconds for buffers to drain

 Then repeat for the downlink direction 22
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Uplinks suffer from
chronic overbuffering

23

Uplink Buffer 
can introduce >1s delays. 
This is a big problem for 
P2P programs like BitTorrent


