renesys

The IPv6 Routing Table in 2010

James Cowie
Clint Hepner

NANOG49 14 June 2010

Overview

- Compare relationships found in today's IPv4 and IPv6 tables
 - Which IPv4 ASNs have set up camp in IPv6?
 - How does their interconnection compare to IPv4?
 - What kind of IPv6 prefixes are they advertising?
 - How's the general reachability at each length?
 - What's the "/24 of the IPv6 table" going to be?
 - Unsettling implications for likely rates of IPv6 growth in 2010-2011, ...
 - •... even as the world is faced with IPv4 free space exhaustion

What Took You So Long?

- We've been watching and waiting for ten years
- Only in the last two years have we heard rumbles of interest from customers
- Only in the last 6 months have we had enough offers of peering to start supporting analysis
- We're integrating 80+ live full-table feeds now
- We still don't have enough data to draw the kind of conclusions we'd like to about the IPv6 ecosystem .. That's worrisome.

Let's give it a shot anyway.

- Think about the implications of the fact that there are two tables (e.g., "two internets").
- To avoid disruptions, "most" of the business relationships that make up the Internet ecosystem will need to port, or die.
- The existing Internet grew organically, and laughs at global engineering solutions.
- Can we replicate the existing Internet, piece by piece, in IPv6? How far along are we?

Let's Discuss Reasonable Expectations

The IPv6 table will contain fewer prefixes

..but presumably all the same ASNs and relationships among ASNs, .. Right?

- Do we expect IPv6 to converge to substantially fewer ASN participants? Fewer multihomers?
 - This would be a significant reduction in the choices available to enterprises at the edge.
- Economic balance of power between Internet's edge and wholesale transit core unlikely to tip back, good engineering intentions notwithstanding.

Autonomous Systems

- IPv4: 34,500+ autonomous systems in use
 - Believed to represent at least 30,000 organizations
 - 14,000 (42%) are single-homed
 - 14,500 (43%) are actively dual-homed
 - 5,200 (15%) are tri-homed or more
 - Every one of these relationships may need porting.
- IPv6: just over 2,200 ASNs in use (~1:16)
 - 1,100 (50%) are single-homed
 - Paucity of data to study detailed preferences yet

Autonomous System Relationships

- 107,000+ edges in the IPv4 ASN graph
 - 63,000+ are transit (directed provider-customer)
 - 44,000+ more are probably peering
 - Each represents a negotiated/contractual relationship that needs to find its way onto the new IPv6 Internet
- Only 8,500 edges in the IPv6 ASN graph ...
 - ~1:13 compared to the IPv4 graph, but ...
 - ~2,200 of these are existing transit edges in IPv4
 - ~3,800 are existing peering edges in IPv4
 - ~2,400 (29%) are novel edges (not in IPv4)

Implications

- 29% of the relationships in IPv6 table are new (2,400 not seen in the existing IPv4 Internet)?!
- If real, this would imply a serious discontinuity in transit preferences between IPv4 and IPv6
- Are people really unable to get IPv6 satisfaction from their current provider mixture?
- Or are these edges just experiments?
- Let's see what kind of ASNs added adjacencies.

IPv6 Driving New Relationships Among ASNs

- 56% of all ASNs in the IPv6 table had to form at least one new relationship to get there.
- 1,277 ASNs forming 2,400 new relationships
 - Hurricane Electric 6939 has 400+ new adjacencies
 - Tinet 3257 has 130+ new adjacencies
 - 50+ other ASNs have at least 10 new adjacencies
 - 500+ have 2-10 new adjacencies
 - 700+ have exactly one new adjacency
- Classic success-breeds-success growth pattern

Who added these adjacencies?

- ~90 (7%) of ASNs with new adjacencies were not previously seen in IPv4 table at all
 - Typically ASNs created or used for IPv6 alone
 - Or mistakes ©
- 220 (17%) single-homed under IPv4
- 350 (28%) dual-homed under IPv4
- 580 (46%) triple-homed or better under IPv4
- In other words, highly-connected sophisticates.
 Not your average IPv4 ASN.

Where's the IPv4 edge in this transition?

- Of the ~34,500 IPv4 ASNs, about 29,000 are "edge" (no ASN customers) and about half of those are multihomed.
- But of the 2,200 ASNs originating IPv6 prefixes:
 - ~1,200 (54%) are IPv4 provider ASNs (16% of IPv4)
 - ~950 (46%) are IPv4 edge ASNs (84% of ipv4)
 - This is badly inverted -- the edge is slow to join
 - Are we missing some incentive for non-provider enterprises to join the IPv6 party?

The IPv4 "Solar System"

- Purple dots (providers) have downstreams, blue dots do not.
- Innermost providers have thousands of downstream ASNs.
- ■You're looking at nearly 40,000 autonomous systems, most in the "Oort Cloud" of enterprise space

The IPv6 "Solar System"

- ASNs have the same placement here as in the IPv4 solar system
- Note good density in the core, sparse coverage at the edge
- Only about 1 in 16 has made the leap to IPv6 space
- All of the easily converted, have been.

Combined View

- 32,000+ teeny tiny blue dots: IPv4 ASNs who have made no move to join the IPv6 alternative Internet
- 2,200+ much larger red crosses, magnified for visibility: ASNs visible in at least one IPv6 route from at least one peer

IPv6 ASNs: Participation by Continent

	Top20	Top100	Top1000	Overall	Total IPv6	Total IPv4
North America	90%	45%	27%	6%	867	14996
South America	70%	42%	14%	12%	142	1144
Europe	90%	70%	42%	9%	1260	14638
Asia	95%	58%	26%	11%	489	4477
Africa	85%	49%	12%	21%	117	545
Australia	85%	57%	21%	18%	213	1175
Earth	100%	70%	41%	7%	2280	34534

A quick look at IPv6 Routes

About 3,500 prefixes total (counting generously*).

• 45	shorter-than-/32s	(1%)
• 1,825	/32	(51%)
• 315	/33-/47	(9%)
• 910	/48	(25%)
• 40	/49-63	(2%)
• 255	/64	(7%)
• 190	longer-than-/65	(5%)

^{*} At 90%+ visibility, full table only ~2,500 routes

The Critical Question: Visibility

- In the IPv4 routing table, rough consensus allows global visibility between /8 and /24.
- You'll often see things </8 and >/24 in "full tables" .. But they are not globally propagated.
- What are the equivalent bounds for IPv6 shaping up to be?
- Practical implications for edge systems and others who expect olde-school multihoming and portable addressing to keep working
- Also those who trade in routing table size futures

Global Reachability

- On the Internet, it can be rather hard to say when a prefix is Globally Reachable
- We use various common-sense rules of thumb involving number of peers who will offer the route as part of a "full table" (again, whatever that means).
- Try this relatively generous definition on for size:
 - A globally reachable prefix has routes known to at least 90% of the surveyed peers.

Global Reachability in IPv4

- After removing redundant more-specific routes...
 - 86% of all IPv4 /24s are seen by 90%+ of peers
 - 81% of all IPv4 /22s are seen by 90%+ of peers
 - 87% of all IPv4 /18s are seen by 90%+ of peers
 - 96% of all IPv4 /16s are seen by 90%+ of peers
- This is a byproduct of our culture: rough consensus among operators about what should be Generally Visible and readvertised.
- This is what we want to see in IPv6 as well...

Global Reachability in IPv6

- If we condition on full tables (peers with at least 1500 routes of the 3500 known)...
- 92% of /32s are seen by 90%+ of peers.
- 73% of /40s are seen by 90%+ of peers.
- 67% of /48s are seen by 90%+ of peers.
- 71% of all prefixes are seen by 90%+ of peers.
- The edge enterprises are even more visible by their absence here. Presumably the majority of IPv4 nonprovider ASNs will manifest as a portable /48.
- Where are all the portable /48s?

Good Reachability in PI space

- 408 PI allocations visible by 50%+ of peers
- 94% aggregate reachability across all lengths
- If only there were more of them

Summary: Go Recruit The Edge

- Out of the 107,000 peer-peer and provider-customer relationships that make up the global IPv4 ecosystem, only about 6% (appx. 8500) have materialized in the IPv6 table so far.
- These edges are biased towards replication of the IPv4 core – highly multihomed providers adding IPv6
- Non-provider enterprises are staying away in droves (939 of 28,944, just 3%, even originate a single IPv6 prefix). Multihomed enterprises: 4%.

The core is leading and the edge is not following.

Summary: Changes in the Core

- Fully **29%** of the relationships in the IPv6 table are new adjacencies, perhaps implying that providers are failing to meet existing customers' demand for IPv6 services.
- Very similar to NANOG meeting attendance statistics!
- We appear to still be in the early days of a migration of IPv4's rich ecosystem of contractual relationships.
- PEER WITH US and we'll keep watching this evolution

renesys

Thank you!

http://www.renesys.com/tech/peering.shtml

IPv6 Peering Inquiries: peering@renesys.com