
BGP 102:
Scaling the Network

Avi Freedman
ServerCentral

Introduction
• BGP is relatively easy to get configured and

basically announcing and using routes.
• It is difficult to scale to the tens-to-hundreds

of routers scale with full iBGP mesh, AS-
Path filters, and AS-Path padding as the
only tools.

• We present Communities, Confederations,
and local-pref use, and some other features,
and show them used in context.

Topics (1)

• Review basic BGP concepts

• Simple BGP Scaling concepts
– Inserting BGP Routes
– Stable Routing and Scaling w/ Loopbacks
– Save CPU and Typing w/ Peer-Groups
– Route Refresh, Soft-Reconfig
– TTL Hack/Security

Topics (2)

• Scalable Advertisements with Communities

• Scalable Route-Selection with local-prefs

• iBGP Scaling Issues
• BGP Confederations
• BGP Scaling with Confederations +

Route Reflectors

Topics (3)

• Supporting Multi-Homed Customers
• Backup Transit

• Sample Network - Topology
• Sample Network - Design Goals
• Sample Network - Implementation
• Review Router Configuration

BGP Concept Review

BGP Intro

• BGP4 is the protocol used on the Internet to
exchange routing information between
providers, and to propagate external routing
information through networks.

• Each autonomous network is called an
Autonomous System.

• ASs which inject routing information on
their own behalf have ASNs.

BGP Peering

• BGP-speaking routers peer with each other
over TCP sessions, and exchange routes
through the peering sessions.

• Providers typically try to peer at multiple
places. Either by peering with the same AS
multiple times, or because some ASs are
multi-homed, a typical network will have
many candidate paths to a given prefix.

The BGP Route
• The BGP route is, conceptually, a

“promise” to carry data to a section of IP
space. The route is a “bag” of attributes.

• The section of IP space is called the
“prefix” attribute of the route.

• As a BGP route travels from AS to AS, the
ASN of each AS is stamped on it when it
leaves that AS. Called the AS_PATH
attribute, or “as-path” in Cisco-speak.

BGP Route Attributes

• In addition to the prefix, the as-path, and the
next-hop, the BGP route has other
attributes, affectionately known as
“knobs and twiddles” -
– weight, rarely used - “sledgehammer”
– local-pref, sometimes used - “hammer”
– origin code, rarely used
– MED (“metric”) - a gentle nudge

• Sequence of AS(s) a route
has traversed.

• Provides a mechanism for
loop detection.

• Policies may be applied
based on AS path.

• Local AS added only when
send to external peer.

*Shortest AS path preferred

AS Path

AS3847
207.240.0.0/16 AS1673

140.222.0.0/16

AS701
192.67.95.0/24

AS3561
204.70.0.0/15

192.67.95.0/24 3847 701 i
140.222.0.0 3847 1673 i
204.70.0.0/15 3847 3561 i
207.240.0.0/16 3847 i

AS6201

E

C

F
G

D

B

A

4 Byte ASNs
• 4 Byte ASNs are coming but…
• There isn’t yet universal support.
• Format will be 16bit.16bit (or 1.100 for

65636)
• Still, now you have to ask in some regions

for 2 byte ASNs and soon it may become
harder to get 2 byte ASNs.

• Next-hop IP address to
reach a network.

• Router A will advertise 198.3.97.0/24
to router B with a next-hop of
207.240.24.202.

• With IBGP, the next-hop does not
change.

• IGPs should carry route to next-hops,
using intelligent forwarding decision.

AS 6201

AS 3847

198.3.97.0/24
A

B

207.240.24.200/30

.201

A

B

.202

C

Next Hop

Local Preference

• Local to AS
• Used to influence BGP

path selection
• Default 100
* Highest local-pref preferred

AS 6201

208.1.1.0/24

A B

208.1.1.0/24 100
Preferred by all
AS3847 routers

208.1.1.0/24 80

AS 3847

G F E

C D

• Indication to external peers of the preferred
path into an AS.

• Affects routes with same AS path.
• Advertised to external neighbors
• Usually based on IGP metric
* Lowest MED preferred

Multi-Exit Discriminator (MED)

• Applies on a AS path basis
• Current aggregation schemes significantly lessen value.

3561

200

1221

3847

6201

8001
JB

D
A

E

G

C

F I

H
K

M

MEDs (cont.)

• IGP (i)
–Network statement under router BGP

• EGP (e)
–Redistributed from EGP

• Incomplete (?)
–Redistributed from IGP

Origin

Next Hop Self

AS701 AS3561

AS3847

A B

C
D AS1

198.32.184.19

198.32.184.116
198.32.184.42

198.32.184.56

BGP Policy

• BGP was designed to allow ASs to express
a routing policy. This is done by filtering
certain routes, based on prefix, as-path, or
other attributes - or by adjusting some of the
attributes to influence the best-route
selection process.

BGP Best-Route Selection
• With all of the paths that a router may

accumulate to a given prefix, how does the
BGP router choose which is the “best” path?

• Through an RFC-specified (mostly) route
selection algorithm.

• BUT each vendor can and does differ subtly!
• Watch out for weights (can cause routing

loops) and be aware that local-prefs override
what remote providers are trying to tell you
with as-path padding.

•Do not consider IBGP path if not synchronized
•Do not consider path if no route to next hop
•Highest weight (local to router)
•Highest local preference (global within AS)
•Shortest AS path
•Lowest origin code IGP < EGP < incomplete
•Lowest MED
•Prefer EBGP path over IBGP path
•Path with shortest next-hop metric wins
•Lowest router-id

BGP Decision Algorithm
(Cisco)

• Important note for those using Cisco in particular –
Ciscos choose which route makes it into the IP
routing table by using “administative distances”.
• So for a given route you may have a connected, a
static, an OSPF, a BGP version, etc, all competing to
make it into the IP routing table then the FIB
• But – by default, the eBGP administrative distance
may be better than your IGP distance. This could be
bad, especially if you don’t properly filter your
internal routes from getting in from eBGP peers.
• ‘distance bgp 200 200 200’
• May want to set the 2nd # (iBGP) < IGP metric

Routing Decision Process

• Used to group destinations to which routing
decisions can be applied.

• Each destination can belong to multiple
communities.

• Usually applied with route-maps.

Communities

eBGP

AS 2033

AS 4200

AS 7007

AS 2041

iBGP

AS 7007

iBGP and eBGP

AS 7007
IX

AS 1239

AS 6079

AS 701

AS 4006

Determining Policy

• What do you want to do?
• The tricky part.
• Configuring is easier…

Typical Starting Point

• Use network statements to inject.
• Use AS-Path lists to control advertisement.
• Use AS-Path padding to prefer or de-prefer

externally-heard paths.
• Have full iBGP mesh.

Inserting Routes
into BGP

Route Insertion Methods

• Static Insertion/network statement - most
common
– Sometimes thought of as “non-scalable”

• Aggregation/aggregate-address statement
– difficult to punch holes

• redistributing through filters (usually with
aggregate-address statements)
– difficult to punch holes
– dangerous as filters are altered

Using Static Insertion

• Best to use static insertion of routes
(network statements on Cisco). Don’t
worry about not being fancy. Stick the
network statement on the router the
customer is on, or on multiple routers for
LAN-attach customers.

• Easy to support customers who want to
advertise more specifics with BGP.

• Also easy to apply per-route route-maps.

Stable Routing
and Scaling

with Loopbacks

Stable BGP - Loobacks (1)
• Watch out for flapping routes.
• Sites think that if a site shows instability, it

is worth blackholing for some time (30-90
minutes) until it stabilizes, though fewer
networks have been using dampening in
recent years.

• But, dampening hurts and flapping hurts
also.

• So, nail non-multi-homed routes to
loopback.

Stable BGP - Loopbacks (2)

• Also - peering between loopbacks enhances
stability, since loopbacks don’t go down.

• Also, good for load-balancing (balaned
statics used underlying one peering session
caused load-balancing for BGP-heard
routes).

• Set up lo0, then
• “neigh x.y.z.q update-source looback0”

B
A

loopback0 207.240.0.1 loopback0 207.240.0.9

207.240.1.45
207.240.1.46

Router A and router B peer with one another’s loopback address. Normally,
the source address of packets sent from router A to router B would be
207.240.1.45. If router B were to receive BGP packets from router A,
the packets would be dropped because router B doesn’t peer with 207.240.1.45.
Because of this, “update-source loopback0” should be applied to the neighbor
statements on both routers, thus telling the routers to set the source address to that
of the specified interface for all BGP packets sent to that peer.

Update-Source Loopback0

Scaling with Loopbacks
• Only have to remember loopback IP of each

router.
• Easy to make sure you’ve “got” all routers

for iBGP mesh.
• You know you have a configured loopback

interface, with in-addr, to nail routes to.
• Good for logging and tac authentication -

eliminates multiple serials showing up.
• Also, iBGP peer between loopbacks – for

stability and if you filter those IPs
externally, security as well.

BGP Stability – Route Refresh
• If both you and your neighbors support

Route Refresh (Dynamic Reconfig)
capability, this is better than soft-reconfig
since it uses no extra memory. (RFC2918)

• It’s just a soft request to resend routes so
you can re-apply your filters.

• Route Refresh should come up beween
peers without negotiation on modern
IOS/JunOS. Check with ‘sho ip bgp neigh
foo’

• If not use soft-reconfig.

BGP Stability - soft-reconfig
• Instead of hammering a session to cause

reevaluation (“clear ip bgp” drops the TCP
session), “clear ip bgp soft” can be used.

• “clear ip bgp x.y.z.q soft out” is low cpu; it
issues withdrawls for all currently-
advertised routes and recomputes and re-
sends roues.

• Enabling soft inbound so you can do “clear
ip bgp x.y.z.q soft in” can cause memory
issues, as it needs to keep copy of all routes
received.

BGP Security
• The simplest method of gaining some

security is to use BGP passwords. Actually,
this is on the underlying TCP session.

• Also or instead, (also is better) you can use
the BGP “TTL Hack” (RFC5082).

• You set your router to expect TTL 254 and
your neighbor sets their router to TTL 255.

• www.nanog.org/mtg-0302/hack.html

Max Prefix Filtering
• In terms of routing, the limitations in a router

are RAM and CPU, not interface speed.
• # of prefixes heard from peers affects both, but

in particular we’re concerned with blocking
accidental reannouncement and protecting our
RAM.

• Enable max-prefix filtering per external peer.
You can set warning thresholds (you need to
syslog to be helpful), and can set various
actions if triggered.

Max Prefix Filtering

• cat3.foo.com(config-router)#neigh a.b.c.d
maximum-prefix 30000 ?

<1-100> Threshold value (%) at which
to generate a warning msg

restart Restart bgp connection after
limit is exceeded

warning-only Only give warning message
when limit is exceeded

<cr>

Logging

• In general you want to enable logging via
syslog but for BGP you in particular want to
know about session resets + reasons, and max-
prefix warnings.

• Use ‘bgp log-neighbor-changes’ in the bgp
clause. Then ‘logging facility daemon’,
‘logging source-interface <intname>’, ‘logging
<loghost>’, maybe ‘logging rate-limit N’

Save CPU and Typing
with peer-groups

Peer Groups (1)

• Peer-groups were not designed to save
typing, actually.

• By grouping neighbors with common policy
together, routers can save lots of CPU by
creating once a route object and then
advertising that object to multiple peers.

• Also, saves typing :)

Peer Groups (2)

• Major restriction - next-hop is part of the
object (one of the attributes), so a given
peer-group can/should only be applied for
peers on a common interface.

• So, useful for eBGP peers but sometimes
not for iBGP peers.

• Still, can express different inbound policy
per peer.

Sample peer-group

neighbor public-peer peer-group

neighbor public-peer next-hop-self

neighbor public-peer prefix-list sanity in

neighbor public-peer route-map public-in in

neighbor public-peer route-map public-out out

neighbor public-peer filter-list 30 in

Scalable Advertisements
with Communities

AS-Path Filtering

• You can either announce routes by prefix or
by as-path filtering. Updating a distributed
prefix table is more difficult; as-path
filtering (allowing routes from you or from
customer ASs to be advertised), combined
with aggressive inbound prefix-based
filtering, is a good first approach.

• But...

Limitation of AS-filtering

• Either have to list all peers, or all
customers. Gets really tricky when you
peer with customers, or customers of peers,
or peers of customers.

• These lists get difficult to read and
distribute as you grow.

• So… Look at Communities to express
policy.

BGP Communities - What
• Easier control of where routes go.
• Just a number (or numbers) that get stamped on

BGP routes.
• ‘neigh x.y.z.q send-comm’ to send

ip comm 4 permit 4969:1200

route-map give-transit

set comm 4969:1200 additive

route-map send-transit

match community 4

BGP Communities - Why
• Give customers control of how you

announce them
• Let customers see where you get routes
• Peering community; transit community;

partial-transit community.
• Example – Philly-area ISP uses community

401 to transit some PHL-area providers to
each other; 401 is the address of a PHL pop.
These #s don’t really matter in particular,
however.

BGP Communities

• Well-known communities -
– no-export - don’t advertise to eBGP peers
– no-advertise - don’t advertise to any peer

• Very Important –
– If you use communities, remember to enable

sending communities internally on all iBGP
sessions. Check how your software sends by
default to external and internal peers.

Sample Communities
• 4969:12392 means “pad 2 times to Sprint”
• 49690:7010 means “don’t announce to uunet”
• 4969:2 means “pad me twice to *”
• Some providers will make communities

flexibly; some won’t. Ask for their doc before
buying!

• http://www.nlayer.net/bgp_communities
• For a larger-scale network use a wildcard-

based community system instead of manually
creating route-maps per peer.

http://www.nlayer.net/bgp_communities�

Scaling with Local-Prefs

AS-Path Padding
• A 1st-cut approach to load-balancing or

quality-balancing might be to de-prefer any
routes heard via a provider you’re seeing
problems with. How?

• First approach is to add an extra copy of the
next-hop AS to the AS-Path, so ^7007$
becomes ^7007 7007$. Longer AS-Paths
are less preferred, all else being equal.

• You can implement complex policy with
this, in fact.

Limitations of AS-padding

• A typical first way to select between
multiple outbound paths is by padding the
less-preferred paths as they come into your
network.

• This works reasonably well, unless you
have to redistribute these paths to others.

• Local-prefs make implementing this easier,
though there is a caveat.

Local-Prefs
• The local-pref is a “powerful” BGP

attribute - it comes before as-path length in
the selection algorithm.

• Setting can override as-path length -
consider the provider with a Gige and a
10Gig who WANTS you to pay attention to
the 7-times-padded path…

• Come up with a unified scheme.
• CUSTOMER ROUTES ARE SACRED.

Typical local-pref Scheme
• 80 de-preferred routes
• 100 questionable IX routes
• <101-115> better IX routes
• <116-119> transit pipes
• 120 private xcon routes
• <121-139> better private routes
• 140+ customer routes

Implementing Local-pref
route-map public-in

set local 100

set comm 15000:8100 15000:666

route-map pni-in

set local 125

set comm 15000:609 15000:666

route-map set-transit

set local 140

set comm 15000:1200 add

Scaling iBGP with
Confederations

iBGP vs. eBGP Review

• iBGP and eBGP are the same protocol; just
different rules.

• Rules are counter-intuitive -
– eBGP advertises everything to everyone by

default. Not the correct policy, most likely.
– iBGP does NOT advertise “3rd-party routes” to

other iBGP peers. Why?
• No way to do loop detection with iBGP, so this

solves it.

iBGP Scaling Issues

• So you have to have ALL BGP-speaking
routers in your as peer with each other.
Really.

• With 10 routers, an iBGP mesh is OK
• With 30 routes it is stretched
• With 100 it is taxed
• Eventually, CPU to deal with multiple

sessions is nasty.

Logical View of full 16-router Mesh

(kudos to danny ex-of-genuity-now-arbor)

Two Approaches
• There are two approaches to allow the iBGP

redistribution restriction to be broken:
– Confederations
– Route Reflectors

• We present confederations more heavily here,
which you may want to consider for a smaller
multi-pop network. Also gives you traffic
engineering flexibility without MPLS.

• Route Reflectors are more commonly used
now.

Confederations (1)

• Makes iBGP more promiscuous
• How?

– Fully-mesh all BGP speakers at a POP
– Use fake ASNs at each POP
– Between POPs, use eBGP rules (send everything)
– Within POPs, use iBGP rules
– Preserve local_prefs between POPs

Confederations, Illustrated

AS 1239

AS 701

AS 4969

AS 64512

AS 64513 AS 64514

Confederations (2)

• Reduces CPU due to internal churn, but can
increases CPU due to external churn in
some cases.

• Trickier as-paths; use communities.
• Identified source of routes handily (just

have to remember fake AS per POP, not one
loopback for each router in a POP).

• Easier to apply MEDs.
• Makes iBGP more “hop-by-hop”.

Implementing Confederations

router bgp 64512

bgp confederation identifier 15000

bgp confederation peers 64512 64513 64514 64515

• note - put in extra confederation peers up-front
• as-path becomes (64512 64513) 7018 instead of 7018

AS-Path filters for
Confederations

– ^$ Doesn’t work any more…
– ^$ matches internal routes in a given POP, but

with confederations your routes will look like:
– ^(64512 64513)$ as well as ^$
– ip as acc 55 deny ^(\([0-9]*\))*$

Route Reflectors (1)
• One or two routers in a ‘cluster’ (often a

POP) are allowed to break the rules for their
‘clients’ and ‘reflect’ routes heard from
other iBGP speakers.

• iBGP routes heard from non-clients are sent
to clients but not to other non-clients.

• iBGP routes heard from clients are sent to
eBGP peers, client peers, and non-clients.

• eBGP works as normal.
• RRs themselves are then fully meshed.

Route Reflectors (2)

Route Reflectors (3)

Route Reflectors (4)
• On the route-reflector server, tag each client

as ‘neigh X route-reflector-client’
• All route-reflector servers must peer with

each other
• (note: Enabling will reset sessions.)
• Two new attributes:

– ORIGINATOR_ID, the Router ID of the
originator. Updates never sent back to that
router.

– CLUSTER_LIST, a list of the CLUSTER_IDs
the route has passed through. Loop detection
here also.

Route Reflectors (5)
• sho ip bgp <route> will identify ‘Originator:

10.0.1.1, Cluster list: 10.0.1.3’ and on a
core mesh member: ‘<aspath>, (Received
from a RR-client)’

• On the route-reflector you can also issue
‘show ip bgp update-group’ for more info.

• Best path selection: Shortest cluster list len

Supporting
Multi-Homed

Customers

Supporting Multi-Homed Custs

• What they need from you is routes to the
‘net, and some ability to be flexible in how
you announce their routes.

• Routes to the ‘net - give them your
communities (“neighbor x.y.z.q send-
communities”). Publish your communities
so they know what they mean. WARN if
you change community semantics.

Supporting Multi-Homed Custs

• Be prepared to punch holes in your
aggregates.
– Using network statements, or filters, no

problem.
– Otherwise, be prepared to use suppress-maps if

you use aggregate-address statements.
• Set up communities they can use to control

which pipes you advertise them to, and
what their routes look like.

Backup Transit

Mutual Backup Transit/Peering
• Make your network better AND help your

competitor. Strange world we live in.
• Find a local competitor who has diverse

connectivity and share the cost of a FastE/GigE.
(Easy if you’re both in a metro Ethernet cloud or at
a local IX).

• Announce each other either:
– Always, but padded (best, requires lots of coordination)
– By request
– Only if you can’t hear them from the outside

(communities-based and tricky)

• Local peering just often makes bandwidth-saving
and/or quality sense

Router Configs

Review - Basic
Router Configuration

“How do I log config changes?”

• Run tacacs+ on most gear and it’ll log all
commands (including ‘conf term’
commands).

• You might want to look into rancid and
other router-config tools.

• Once you start MacGuyver-ing things it’s
hard to go back

Cisco Regular Expressions

. Period matches any single character, including white space.
* Asterisk matches 0 or more sequences of the pattern.
+ Plus sign matches 1 or more sequences of the pattern.
? Question mark matches 0 or 1 occurrences of the pattern
^ Caret matches the beginning of the input string.
$ Dollar sign matches the end of the input string.
_ Underscore matches a comma (,), left brace ({), right brace (}),

left parenthesis, right parenthesis, the beginning or end of the
input string, or a space.

[] Brackets designate a range of single character patterns.
- Hyphen separates the endpoints of a range.

Basic Parameters
aaa new-model

aaa authentication login default tacacs+ local

aaa accounting commands 15 stop-only tacacs+

aaa accounting network start-stop tacacs+

aaa accounting connection start-stop tacacs+

aaa accounting system start-stop tacacs+

ip tacacs source-interface Loopback0

tacacs-server host 10.5.0.1

tacacs-server host 10.6.0.2

tacacs-server host 10.7.0.3

tacacs-server key noBaDpeers

Config for Sample Network

Sample Network
BOS
64513

CHI
64514

SJC
64515

NYC
64516

IAD
64512LAX

64517

T2/2 T2/0
T2/1

G1/10

G3/11

G1/9

G3/10
T2/3

NoNameNet
Equinix Ashburn

GigE to NYC

10Gig to CHI

CORE1

CORE2

CUST1

10Gig to BOS

GigE to CHI

GigE to SJC

NETFOO
PNI

TRANSIT1

Design Goals (1)

• Filter customer routes and bogons/default
vigorously on inbound; assign (or let them
assign) a transit community.

• Filter garbage (IX) routes inbound from
everyone.

• No dampening.
• Allow customers to control how you

advertise them.

Design Goals (2)

• Prefer customers, then private, then good
public, then worse public, routes.

• Use confederations not because needed, but
for scaling concerns.

• Use loopbacks for iBGP peering.

Interface Configs
interface Loopback0

ip address 207.106.0.2 255.255.255.255

!

interface TenGigabitEthernet2/0

description core1-core2 private

ip add 207.106.2.89 255.255.255.252

!

interface TenGigabitEthernet2/2

description POP Backbone

ip address 207.106.4.1 255.255.255.224

!

Interface TenGigabitEthernet2/3

description IX Connection

ip address 192.41.177.4 255.255.255.0

! (and for each interface)

no ip redirects

ip flow ingress ! Maybe

ip route-cache same-interface

ip route-cache flow

load-interval 30

Interface TenGigabitEthernet2/1

description link to BOS

ip address 207.106.2.5 255.255.255.252

!

interface GigabitEthernet1/10

description link to CHI

ip address 207.106.2.9 255.255.255.252

!

Interface GigabitEthernet3/11

description link to SJC

ip address 207.106.2.13 255.255.255.252

!

Interface GigabitEthernet1/9

description PI to Network FOO

ip address 9.9.9.10 255.255.255.252

!

interface GigabitEthernet3/10

description Transit link to fast.net

ip address 207.106.127.6 255.255.255.252

OSPF Configuration
router ospf 22

redistribute connected subnets

redistribute static subnets

passive-interface TenGigabitEthernet3/10

passive-interface GigabitEthernet1/9

passive-interface TenGigabitEthernet2/3

network 207.106.4.0 0.0.0.31 area 207.106.4.0

network 207.106.2.0 0.0.0.255 area 0
area 0 authentication

area 207.106.4.0 authentication

! Plus appropriate costs on different-size links

BGP Config
ip as acc 1 permit .*

ip as acc 2 deny .*

router bgp 64512

no synchronization

bgp router-id 207.106.0.2

no bgp dampening

confederation identifier 15000

confederation peers 64512 64513 64514 64515
64516 64517 64518 64519

network 207.106.60.0 mask 255.255.255.0 route-
map set-local-community

route-map set-local-community

set comm 15000:123

Public Peers (1)
router bgp 64512

neighbor public-peer peer-group

neighbor public-peer next-hop-self

neighbor public-peer soft-reconfig in

neighbor public-peer version 4

neighbor public-peer send-community

neighbor public-peer prefix-list from-peers in

neighbor public-peer route-map public-in in

neighbor public-peer route-map send-transit out

neighbor public-peer filter-list 4 in

Peer Filter (old way)
access-list 110 deny ip host 0.0.0.0 any

access-list 110 deny ip 192.41.177.0 0.0.0.255 255.255.255.0 0.0.0.255

access-list 110 deny ip 192.157.69.0 0.0.0.255 255.255.255.0 0.0.0.255

access-list 110 deny ip 198.32.128.0 0.0.0.255 255.255.255.0 0.0.0.255

access-list 110 deny ip 198.32.130.0 0.0.0.255 255.255.255.0 0.0.0.255

access-list 110 deny ip 198.32.136.0 0.0.0.255 255.255.255.0 0.0.0.255

access-list 110 deny ip 198.32.146.0 0.0.0.255 255.255.255.0 0.0.0.255

access-list 110 deny ip 198.32.146.0 0.0.1.255 255.255.254.0 0.0.1.255

access-list 110 deny ip 198.32.176.0 0.0.0.255 255.255.255.0 0.0.0.255

access-list 110 deny ip 198.32.180.0 0.0.0.255 255.255.255.0 0.0.0.255

access-list 110 deny ip 198.32.184.0 0.0.0.255 255.255.255.0 0.0.0.255

access-list 110 deny ip 198.32.186.0 0.0.0.255 255.255.255.0 0.0.0.255

access-list 110 deny ip 127.0.0.0 0.255.255.255 255.0.0.0 0.255.255.255

access-list 110 deny ip 10.0.0.0 0.255.255.255 255.0.0.0 0.255.255.255

access-list 110 deny ip 172.16.0.0 0.15.255.255 255.240.0.0 0.15.255.255

access-list 110 deny ip 192.168.0.0 0.0.255.255 255.255.0.0 0.0.255.255

access-list 110 permit ip any any

Peer Filter (new way)
ip prefix-list from-peers deny 0.0.0.0/0

ip prefix-list from-peers 192.41.177.0/24 ge 24

ip prefix-list from-peers 192.157.69.0/24 ge 24

ip prefix-list from-peers 198.32.128.0/24 ge 24

ip prefix-list from-peers 198.32.130.0/24 ge 24

ip prefix-list from-peers 198.32.136.0/24 ge 24

ip prefix-list from-peers 198.32.146.0/24 ge 24

ip prefix-list from-peers 198.32.146.0/23 ge 24

ip prefix-list from-peers 198.32.176.0/24 ge 24

ip prefix-list from-peers 198.32.180.0/24 ge 24

ip prefix-list from-peers 198.32.184.0/24 ge 24

ip prefix-list from-peers 198.32.186.0/24 ge 24

ip prefix-list from-peers 127.0.0.0/8 ge 8

ip prefix-list from-peers 10.0.0.0/8 ge 8

ip prefix-list from-peers 172.16.0.0/16 ge 16

ip prefix-list from-peers 192.168.0.0/16 ge 16

! (plus plenty more from your friendly neighborhood bogon filter)

ip prefix-list from-peers permit 0.0.0.0/0 ge 3

Public Peers (3)
route-map public-in permit 10

set community 15000:666 15000:8100

set local 100

ip community-list 1 permit 15000:123

ip community-list 1 permit 15000:1200

route-map send-transit

match community 1

Public Peers (4)

! Obviously, don’t apply this to UU, Sprint,

! Savvis, ATT, etc…

ip as-path access-list 4 deny _701_

ip as-path access-list 4 deny _1239_

ip as-path access-list 4 deny _3561_

ip as-path access-list 4 deny _7018_

ip as-path access-list 4 deny _1_

<etc>

ip as-path access-list 4 permit .*

Private Peers (1)

router bgp 64512

neighbor <peerip> next-hop-self

neighbor <peerip> soft-reconfig in

neighbor <peerip> version 4

neighbor <peerip> send-community

neighbor <peerip> prefix-list from-peers in

neighbor <peerip> route-map private-in in

neighbor <peerip> route-map send-transit out

neighbor <peerip> filter-list 4 in

Private Peers (2)
route-map public-in permit 10

set community 15000:666 15000:8100

set local 120

Customer Peer (1)
router bgp 64512

neighbor <custip> next-hop-self

neighbor <custip> soft-reconfig in

neighbor <custip> version 4

neighbor <custip> send-community

neighbor <custip> prefix-list from-customerAA in

neighbor <custip> route-map set-transit in

neighbor <custip> route-map send-transit out

! Prefix list is PER-CUSTOMER!!!

Customer Peer (2)
route-map set-transit

set local-pref 140

set community 15000:8100 15000:1200 additive

! Or, for customers who want flexibility

! Let them set themselves for transit

route-map allow-transit

set local-pref 140

set community 15000:8100 additive

!also, have communities for changing local-pref

Internal - Same or Diff Confed

router bgp 64512

neighbor <custip> next-hop-self

neighbor <custip> update-source Loopback0

nieghbor <custip> send-community

! Main thing is to set med on per-neigh basis.

! No need for soft-reconfig in; can always clear

! it outbound from the other end.

To nLayer
ip community 25 permit 15000:44360

ip community 26 permit 15000:44362

ip community 27 permit 15000:44361

ip community 28 permit 15000:4436

ip community 28 permit 15000:1200

ip community 28 permit 15000:123

route-map 2nlayer deny 10

match comm 25

route-map 2nlayer permit 20

match comm 26

set as pre 15000 15000

route-map 2nlayer permit 30

match comm 27

set as pre 15000

route-map 2nlayer permit 40

match comm 28

Communities Caveat

There are better (more generic), though more complex, ways of doing
communities systems with wildcards that work on Cisco, Juniper, and
Foundry (search NANOG presentations).

{Backup} Transit
route-map backup-out permit 10

match community 1

set as pre 15000 15000 15000 15000 15000 15000

route-map send-transit permit 10

match community 1

route-map allow-transit

set local-pref 140

set community 15000:8100 additive

	BGP 102:�Scaling the Network
	Introduction
	Topics (1)
	Topics (2)
	Topics (3)
	BGP Concept Review
	BGP Intro
	BGP Peering
	The BGP Route
	BGP Route Attributes
	Slide Number 11
	4 Byte ASNs
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	BGP Policy
	BGP Best-Route Selection
	BGP Decision Algorithm (Cisco)
	Routing Decision Process
	Slide Number 23
	eBGP
	iBGP
	Slide Number 26
	Determining Policy
	Typical Starting Point
	Inserting Routes �into BGP
	Route Insertion Methods
	Using Static Insertion
	Stable Routing�and Scaling �with Loopbacks
	Stable BGP - Loobacks (1)
	Stable BGP - Loopbacks (2)
	Slide Number 35
	Scaling with Loopbacks
	BGP Stability – Route Refresh
	BGP Stability - soft-reconfig
	BGP Security
	Max Prefix Filtering
	Max Prefix Filtering
	Logging
	Save CPU and Typing�with peer-groups
	Peer Groups (1)
	Peer Groups (2)
	Sample peer-group
	Scalable Advertisements�with Communities
	AS-Path Filtering
	Limitation of AS-filtering
	BGP Communities - What
	BGP Communities - Why
	BGP Communities
	Sample Communities
	Scaling with Local-Prefs
	AS-Path Padding
	Limitations of AS-padding
	Local-Prefs
	Typical local-pref Scheme
	Implementing Local-pref
	Scaling iBGP with�Confederations
	iBGP vs. eBGP Review
	iBGP Scaling Issues
	Logical View of full 16-router Mesh
	Two Approaches
	Confederations (1)
	Confederations, Illustrated
	Confederations (2)
	Implementing Confederations
	AS-Path filters for Confederations
	Route Reflectors (1)
	Route Reflectors (2)
	Route Reflectors (3)
	Route Reflectors (4)
	Route Reflectors (5)
	Supporting �Multi-Homed�Customers
	Supporting Multi-Homed Custs
	Supporting Multi-Homed Custs
	Backup Transit
	Mutual Backup Transit/Peering
	Router Configs
	Review - Basic �Router Configuration
	“How do I log config changes?”
	Slide Number 83
	Basic Parameters
	Config for Sample Network
	Sample Network
	Slide Number 87
	Design Goals (1)
	Design Goals (2)
	Interface Configs
	OSPF Configuration
	BGP Config
	Public Peers (1)
	Peer Filter (old way)
	Peer Filter (new way)
	Public Peers (3)
	Public Peers (4)
	Private Peers (1)
	Private Peers (2)
	Customer Peer (1)
	Customer Peer (2)
	Internal - Same or Diff Confed
	To nLayer
	Communities Caveat
	{Backup} Transit

