Network Tapping Technologies

Kevin A. Nassery
NANOG48
02/22/10
What is a Data Access Switch?

• Infrastructure designed to provide robust out of band mapping of network traffic (from taps, port mirrors, etc) to network capture and analyzer tools.

• Traditionally traffic analyzer tools have been painful to deploy due to limitations of SPAN sessions, full-duplex taps, etc.

• DAN Switches go a long way solving these issues.
Anatomy of a Data Access Network
DAN Switch Use Case #1: Public Services Network Module Utilizing Network IDS, and External Flow Generator at the network perimeter.

Without DAN Switching

• Both switches must be configured to mirror traffic from uplink ports to sensor ports.

• IDS requires 2 ports 1 for each switch & must aggregate the data in software.

• Flow Generator and IDS are looking at the same traffic.

• Flow Generator also requires 2 ports & must aggregate data in software.

• 2 SPAN session limitation on switches means Network Engineer wishing to connect portable analyzer must disconnect an active analyzer.

• Network Engineer using portable analyzer can only see half of the external traffic assuming topology is load balanced.
DAN Switch Use Case #1: Public Services Network Module Utilizing Network IDS, and External Flow Generator at the network perimeter.

With DAN Switching

- 1 SPAN port per switch is used.
- Switch SPAN ports are aggregated by DAN switch.
- DAN switch output to IDS sensor is 1 port.
- DAN switch sends the same output stream that the IDS sensor is using to the Flow Generator.
- Neteng now has choice of using free’d SPAN ports, or better yet, using a new output port on the DAN switch for his portable analyzer.
- If IDS or Flow generator are overloaded specific traffic can be excluded from stream (Ipsec VPN traffic perhaps).
DAN Switch Use Case #2: Server Admin Teams want Network Level Visibility into their servers, and *only* their servers.

Not using DAN Switches:

- SPAN ports (potentially with VACLs) must be configured for each switch to each sniffer.
- Servers must aggregate data together using software.
- Does not scale for >2 number of groups.
- Additional access switches require additional server ports.
DAN Switch Use Case #2: Server Admin Teams want Network Level Visibility into their servers, and *only* their servers.

Using DAN Switches:

- Simple SPAN sessions for relevant VLANS.
- Aggregation of source ports (could be 10gE).
- Unfiltered Access to NetEng Sniffer.
- IP ACL style filter for Team A, Team B output ports restricts view to their servers (even in shared VLANS).
My Background

• Been using DAN devices for a few years.
• Recently advised on an effort where 10gE connections were being monitored and converted to flows at the edge.
• It seems like vendors are in a GUI feature war in this space, rather than making these things more usable in the real world.
The good

- Flexibility over traditional taps, port mirrors, aggregation and regeneration.
- Performance advantages of being able to filter traffic before it gets to your tools.
- Avoids the complexity of distributed sniffers and RSPAN.
- Easy to use, and to manage remotely.
- Aggregate multiple source ports
- Filter that input data
- Distribute the input data to output ports
- Filter that output data
The Bad #1: No Truncation

• Tools which only need headers get whole frames.
 – limits our ability to oversubscribe tool-ports.

• For example looking at headers of a 10gE link in production ~5% of information was headers.
 – Even with link saturation, truncated headers could be monitored with a gigE tool port.
The Bad #2: No custom PDU offsets

- Filters can be written for basic protocol properties like TCP port, but cannot have filters on arbitrary offsets like TCP[0] to indicate the first byte of a TCP header.
- Typically we only get frame offsets which is too difficult to use consistently (for example dot1q variance, or IP options change TCP[0]).
The Bad #3: Limited ability to leverage 802.1q VLAN filters.

- Many switches strip VLAN tags off SPAN ports.
- This means DAN device must be inline dot1q links.
- Limitation of switch not DAN itself.
The Bad #4: Source ports must be from single network layer.

• If src ports are combined from access, distribution, core, and perimeter networks packets are duplicated to the tool port at every point they are seen confusing most tools.
The Cure

- In-line frame truncation
- Tcpdump style PDU offsets for major protocols.
- Switch vendors need to support mirroring 802.1q VLAN tags to SPAN ports.
- IP TTL De-duplication (using TTL variances to separate distinct routing layers and eliminate duplicate frames).
- Input ports should be able to be labeled with arbitrary 802.1q tags so that tool ports can filter different access layers.
- Statistical sampling mode (send me 1/20 packets).
Q & A