BIRD
Internet Routing Daemon

CZ.NIC z. s. p. o.
Ondrej Filip / ondrej.filip@nic.cz
NANOG-48, Austin, TX
Project history

- Project started in 1999
- Seminar project – Charles University
 – Prague
- Project slept for a while
- Small reincarnation in 2003 and 2006
- Project fully renewed since Q4 2008 – part of CZ.NIC Labs - http://labs.nic.cz
Project goals

- Opensource routing daemon – alternative to Quagga/Zebra
- Fast and efficient
- Portable, modular
- Support current routing protocols
- IPv6 and IPv4 in one source code – dual compilation
Features

- Portable – Linux, FreeBSD, NetBSD, OpenBSD
- IPv4/IPv6 support
- Static routing
- RIP, RIPv2, RIPvng
- OSPFv2, OSPFv3
- BGP (v4 and v6), route reflector
- Route server
- ASN32 (ASPLAIN), MD5
- MRTdump logging
Features

- Multiple routing table - RIBs (internal and also synchronization with OS)
- Protocol PIPE
- Multiple routers, route reflectors on a single system
- Powerful configuration
- Very powerful filtering language
- Command line interface (show, restart, ...)
- Automatic reconfiguration
log "/var/log/bird.log" all;

router id 193.51.100.238;

protocol static {
 route 10.0.0.0/8 drop;
 route 172.16.0.0/12 drop;
 route 192.168.0.0/16 drop;
}

filter bgp_out {
 if (net = 192.175.48.0/24) &&
 (source = RTS_DEVICE) then accept;
 else reject;
}

protocol bgp NIX_1 {
 local as 112;
 neighbor 193.51.100.235 as 6981;
 import all;
 export filter bgp_out;
}
CLI example

bird> show protocols
name proto table state since info
direct1 Direct master up Apr11
kernel1 Kernel master up Apr11
device1 Device master up Apr11
static1 Static master up Apr11
NIX_2 BGP master up Apr11 Established
NIX_1 BGP master up Apr25 Established
ospf1 OSPF master up Apr11 Running
bird>
bird> show status
BIRD 1.1.3
Current server time is 06-08-2009 22:01:06
Last reboot on 11-07-2009 22:54:12
Last reconfiguration on 30-07-2009 06:25:25
Daemon is up and running
bird>
CLI example (cont)

bird> show route
10.0.0.0/8 via 200.30.10.3 on eth2 [ospf1 13:10] E2 (150/5/1000)
127.0.0.0/8 dev lo [direct1 13:09] (240)
200.30.20.0/24 via 200.30.10.3 on eth2 [ospf1 13:10] I (150/10)
200.30.10.0/24 dev eth2 [direct1 13:09] (240)
 dev eth2 [ospf1 13:10] I (150/5)
200.0.10.0/24 dev eth0 [direct1 13:09] (240)
 dev eth0 [ospf1 13:09] I (150/5)
172.16.0.0/16 via 200.30.10.3 on eth2 [ospf1 13:10] E2 (150/5/1000)
195.47.235.0/24 via 194.50.100.246 on eth1 [NIX2 Apr11] (100)[AS688i]
 via 194.50.100.245 on eth1 [NIX1 Apr25] (100)[AS688i]

bird>
bird> show route protocol ospf1
10.0.0.0/8 via 200.30.10.3 on eth2 [ospf1 13:10] E2 (150/5/1000)
200.30.20.0/24 via 200.30.10.3 on eth2 [ospf1 13:10] I (150/10)
200.30.10.0/24 dev eth2 [ospf1 13:10] I (150/5)
200.0.10.0/24 dev eth0 [ospf1 13:09] I (150/5)
172.16.0.0/16 via 200.30.10.3 on eth2 [ospf1 13:10] E2 (150/5/1000)
CLI example (cont)

bird> show route for 127.0.0.1
127.0.0.0/8 dev lo [direct1 13:09] (240)

bird> show route filter bgp_out
192.175.48.0/24 dev dummy0 [direct1 Apr1] (240)

bird> show route count
1469 of 1469 routes for 849 networks

bird> show route export NIX_1
192.175.48.0/24 dev dummy0 [direct1 Apr1] (240)

bird> show route where 127.0.0.5 ~ net
0.0.0.0/0 via 195.47.235.1 on eth0 [static1 Apr1](200)
127.0.0.0/8 dev lo [direct1 Apr1] (240)

bird> show route filter {if 127.0.0.5 ~ net then accept;}
0.0.0.0/0 via 195.47.235.1 on eth0 [static1 Apr1](200)
127.0.0.0.0/8 dev lo [direct1 Apr1] (240)
Filter example – router server

- **Route server policy - NIX.CZ**

<table>
<thead>
<tr>
<th>Evaluation order</th>
<th>Community</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0:<peer-as></td>
<td>Do not advertise to <peer-as></td>
</tr>
<tr>
<td>2</td>
<td>47200:<peer-as></td>
<td>Advertise to <peer-as></td>
</tr>
<tr>
<td>3</td>
<td>0:47200</td>
<td>Do not advertise to any peer</td>
</tr>
<tr>
<td>4</td>
<td>47200:47200</td>
<td>Advertise to all peers</td>
</tr>
</tbody>
</table>
Filters example

define myas = 47200;

function bgp_out(int peeras)
{
 if ! (source = RTS_BGP) then return false;
 if (0, peeras) ~ bgp_community then return false;
 if (myas, peeras) ~ bgp_community then return true;
 if (0, myas) ~ bgp_community then return false;
 return true;
}

protocol bgp R25192x1 {
 local as myas;
 neighbor 194.50.100.13 as 25192;
 import where bgp_in(25192);
 export where bgp_out(25192);
 rs client;
}
Filters example

function avoid_martians()
prefix set martians;
{
 martians = [169.254.0.0/16+, 172.16.0.0/12+,
 192.168.0.0/16+, 10.0.0.0/8+, 224.0.0.0/4+,
 240.0.0.0/4+, 0.0.0.0/32-, 0.0.0.0/0{25,32},
 0.0.0.0/0{0,7}];

 # Avoid RFC1918 networks
 if net ~ martians then return false;

 return true;
}
Filters example

function asmatch()
int set asnums;
{
 asnums = [11111, 22222, 33333, 44444, 55555,
 66666, 77777, 88888, 99999, 100..200];

 # Check originating AS number
 if bgp_path.last ~ asnums then return true;

 return false;
}
Filters example

case bgp_path.last {
 11111: if(prefAS11111()) then accept;
 22222: if(prefAS22222()) then accept;
 33333: if(prefAS33333()) then accept;
 44444: if(prefAS44444()) then accept;
 else: reject;
};
BIRD as a route server
BIRD at LoNAP

- First BIRD RS implementation
- Two route-servers
- BIRD and OpenBGPd
- BIRD in multiple RIBs setup
- Thanks for help with debugging!
- 25 sessions, 1000 prefixes (Q3/2009)
BIRD at NIX.CZ

- Also multiple RIBs setup
- BIRD on Linux and Quagga on FreeBSD
- No BIRD's crash since implementation (1.1.3 release)
- Approx 100 IPv4 sessions (40 IPv6)
- Approx 6000 IPv4 prefixes (100 IPv6)
- Memory consumption – 70MB (Quagga 240MB)
BIRD at VIX

- Based only on BIRD
- Different approach – P2P PIPE protocols
- Currently first 12 participants
BIRD at VIX
BIRD at LINX

- Since January 2010
- After long and careful testing
- Replacement of Quagga
- Similar design as NIX.CZ and LoNAP
- Approx. 40k IPv4 routes
- Over 200 BGP sessions
LINX testing

CPU & Memory Utilisation of RS1 with 163 peers with 46.5k prefixes

CPU Utilisation %

time seconds

0 500 1000 1500 2000

0 20 40 60 80 100

cpu

memory
Other applications

- Switch and Data RS, MSK-IX RS
- AS112 server at NIX.CZ
- BGP/OSPF router for smaller ISPs
- Router for some CZ.NIC's anycast nodes
- Used is small embedded system – part of firmware of some WiFi APs
- Implementation at some other IXPs in progress (JPNAP, DE-CIX, ...) - Euro-IX activity
BIRD vs other daemons

- Full IPv4 BGP table import ~300k routes
- Comparison made on Linux system
- Multiple measurements
- CPU and memory consumption (sec, MB)
- Test 1 – with OS routing table sync (bgpd+zebra)
- Test 2 – w/o OS routing table sync
- Quagga (0.99.10)
- OpenBGPd (3.6 - Linux port)
BIRD vs other daemons

- Test 1

<table>
<thead>
<tr>
<th>Daemon</th>
<th>Memory (MB)</th>
<th>CPU (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quagga</td>
<td>90 + 77 = 167</td>
<td>32 + 120 = 152</td>
</tr>
<tr>
<td>BIRD</td>
<td>30</td>
<td>14</td>
</tr>
</tbody>
</table>

- Test 2

<table>
<thead>
<tr>
<th>Daemon</th>
<th>Memory (MB)</th>
<th>CPU (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quagga</td>
<td>87</td>
<td>30</td>
</tr>
<tr>
<td>BIRD</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>OpenBGP</td>
<td>33 + 18 = 51</td>
<td>10 + 7 = 17</td>
</tr>
</tbody>
</table>
Future development

- Monthly releases
- Improvement of OSPF (Opaque LSA, ...)
- Lightweight CLI
- Route flap dampening
- ...
- Depends on user demand
Summary

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Powerful configuration and filter language</td>
<td>● Unusual configuration language</td>
</tr>
<tr>
<td>● Lightweight, efficient</td>
<td>● Some features in development</td>
</tr>
<tr>
<td>● Developed by people from IXP community</td>
<td>● Single thread?</td>
</tr>
<tr>
<td>● Active development</td>
<td>● IPv4/IPv6 separation</td>
</tr>
</tbody>
</table>
¿Questions?

http://bird.network.cz
<ondrej.filip@nic.cz>