

an MPLS/VPLS based internet exchange

Overview

- AMS-IX version 3
 - Short overview
 - Bottlenecks and limitations
- AMS-IX version 4
 - ► The MPLS/VPLS platform
- ► AMS-IX v3 to v4 migration
- Operational Experience

June 2009 situation before start of migration AMS-IX version 3

Characterization

- ▶ E, FE and (N *) GE connections on BI-15k or RX8 switches
- (N *) I0GE connections resilient connected on switching platform (MLX16 or MLX32) via PXCs
- Brocade "port security" on customer interface to enforce one MAC per port rule for loop prevention

Characterization

- Two networks: one active at any moment in time
- Selection of active network by VSRP
 - Inactive network switch blocks ports to prevent loops
- PSCD, photonic switch control daemon
 - AMS-IX developed software to act on VSRP traps and manage PXCs

AMS-IX Version 3 Platform

Topology Failover

Traffic and Port Prognoses

Bottlenecks and Limitations

- Core switches (MLX32, 128 10GE line rate) fully utilized
 - Limits ISL upgrade
 - Summer 2009 no substantial bigger switches on the market
- Platform failover introduces short link-flap on all 10GE customer ports. In few (but increasing) cases this leads to BGP flapping
 - With more and more 10GE customer ports impact on overall platform stability becomes larger and larger
- Growth of number of 10G connections and 10GE customer
 LAG size requires larger 10GE access switches
 - Smaller switches => less local switching => larger ISL trunks

Requirements

- Scale the core to at least double amount of ports (Q2/3 2009)
- ▶ Keep resilience in platform and 10GE access but reduce impact on failover.
- Increase amount of IOGE customer ports on access switches
 - More local switching
- Migrate to single architecture platform
 - Reduce management overhead
- Use future proof (3 to 5 years) hardware that allows upscaling to high-density IOGE (2010) and 40/100GE (end 2010, early 2011)

Complete MPLS/VPLS topology AMS-IX version 4

Overview

- MPLS/VPLS-based peering platform
- Scaling of core switches by adding extra switches in parallel
 - 4 LSPs between each pair of access switches
 - Load balancing of traffic over 4 LSPs between each pair of access switches
- Retain 10GE access switch resilience
 - ► Keep I0GE customer connection on PXC
 - No need for complete platform failover anymore
 - Local impact only (single pair of access switches on a site)

Characterization

- OSPF
 - ▶ BFD for fast detection of link failures
- RSVP-TE signalled LSPs over predefined paths
 - primary and secondary (backup) paths defined
- VPLS instance per VLAN
 - Static defined VPLS peers (LDP signalled)
 - Load balanced over parallel LSPs over all core routers
- Layer 2 ACLs instead of Port Security
 - Manual adjustment for now

MPLS/VPLS setup

AMS-IX v3 to v4 migration

How did we do the platform migration?

Migration steps: Initial situation AMS-IX v3 to v4 migration

Platform Migration

Preparation

- Build new version of PSCD (Photonic Switch Control Deamon)
 - No VSRP traps but LSP state in MPLS cloud
- Develop configuration automation
 - Describe network in XML, generate configurations from this
- Move non MPLS capable access switches behind MPLS routers and PXC as a 10GE customer connection
- Upgrade all non MPLS capable 10GE access switches to Brocade MLX hardware
- Define migration scenario that would have no customer impact

- 2 Co-location sites only for simplicity
- Double L2 network
- VSRP for master slave selection and loop protection

Migration steps: Initial situation simplified AMS-IX v3 to v4 migration

 Not possible to connect GE access switch to both MPLS/VPLS cloud and basic L2 network

Migration steps: move GE access behind PXC AMS-IX v3 to v4 migration

- Production on L2 network (red)
- Migrate blue network to MPLS/VPLS
 - Traffic between two PE routers load balanced over 2 LSPs, one over each P router
- Test functionality and connections using test traffic sent by Anritsu traffic generators

Migration steps: Migrate one half to MPLS/VPLS AMS-IX v3 to v4 migration

- Move production traffic to MPLS/VPLS cloud
 - Use PXCs for failover
 - New PSCD
- Run production on MPLS/ VPLS cloud for 6 weeks

Migration steps: Production on MPLS/VPLS, L2 backup AMS-IX v3 to v4 migration

- Migrate second half of the platform to MPLS/VPLS
- Test functionality and connections using test traffic sent by Anritsu traffic generators

Migration steps: Two MPLS/VPLS platforms AMS-IX v3 to v4 migration

- Move production traffic to red MPLS/VPLS cloud using the newly developed version of PSCD to manage the PXCs
- Still two separate networks, both MPLS/ VPLS based

Migration steps: production on second MPLS/VPLS platform AMS-IX v3 to v4 migration

- All PE routers connected to all P routers
 - Between each pair of PE routers,
 4 LSPs. One over each P router
 - Traffic between each pair of PE routers load balanced over the 4 LSPs
- 10GE customer connections distributed over local PE routers
 - Resilience in I0GE customer connection to local PE router by means of PXCs

Migration steps: integration to single MPLS/VPLS cloud AMS-IX v3 to v4 migration

Migration - Conclusion

- Traffic load balancing over multiple core switches solves scaling issues in the core
- Increased stability of the platform
 - ▶ Backbone failures are handled in the MPLS cloud and not seen at the access level.
 - Access switch failures are handled by PXC for a single pair of switches only and not the whole platform
- ▶ Upscaling access switches to Brocade MLX32 allows for higher access port density

Operational Experiences

Operational experience Issues

- ▶ BFD instability
 - ▶ High LP CPU load caused BFD timeouts
 - Resolved by increasing timers
- Bug: ghost tunnels
 - Double "Up" event for LSP path
 - Results in unequal load-balancing
 - Scheduled to be fixed in next patch release

Operational experience Issues (2)

- Multicast replication
 - Replication done on ingress PE, not on core
 - Only uses Ist link of aggregate of Ist LSP
 - With PIM-SM snooping traffic is balanced over multiple links, but this has some serious bugs
 - Bugfixes and load-sharing of multicast traffic over multiple LSPs scheduled for next major release

Operational experience

Issues (3)

Operational experience *Issues* (3)

- Delay spikes in RIPETTM graphs
 - TTM datagrams have high interval (2 packets per minute), with some entropy (source port changes)
 - Brocade VPLS CAM: Entries programmed individually for each backbone port, age out after 60s
 - For 24-port aggregates, traffic often passes port without programming => CPU learning => high delay
- Does not affect real-world traffic
 - Much lower interval between frames
- Looking into changing/disabling CAM aging

Operational experience Issues (4)

- From 213.136.17.28: icmp_seq=1 Packet is claustrophobic
- Limited to single user
- Suspecting problem caused by protocol-stack on client ;-)

Operational experience The good stuff

- Increased stability
 - Backbone failures handled by MPLS (not seen by customers)
 - Access switch failures handled for a single pair of switches
 - Phased relocation of traffic streams
 - ▶ Looped traffic filtered by L2 ACL => No effect on linecard CPU

Operational experience The good stuff (2)

- Easier debugging of customer ports
 - ▶ Simply swap to different, active switch using Glimmerglass PXC
- Config generation
 - ▶ Absolute necessity due to size of MPLS/VPLS configuration
 - Fairly simple because of single hardware platform

Operational experience The good stuff (3)

- Scalability (future options)
 - Bigger core devices
 - Do not need to be MPLS-capable
 - ▶ Load-sharing over > 4 cores
 - Pending feature request
 - Use of different cores for sets of PEs
 - Multiple layers of P-routers

Conclusions

- Some issues found
 - Nothing with impact on customer traffic
- Traffic load-sharing over multiple devices solves scaling issues in the core
- Increased stability of the platform
 - ▶ Backbone failures not seen at the access level
 - Access switch failures trigger failover for corresponding Glimmerglass PXCs only
- Upscaling access switches allows for higher access port density
- Single hardware platform simplifies configuration generation

Questions?