The Future of Internet Exchange Points

Richard A Steenbergen <ras@nlayer.net> nLayer Communications, Inc.
Avi Freedman <avi@servercentral.net> ServerCentral
History of Internet Exchange Points
History of Internet Exchange Points

• 0th gen: Throw a cable over the wall. PSI and Sprint conspire to bypass ANS. When the 3rd network wants to connect, thus is born MAE-East.

• 1st commercial gen: FDDI, Ethernet, multiple metro areas, head of line blocking, scaling issues.
History of Internet Exchange Points

• 2nd gen: ATM exchange points, from AADS/PBNAP to the MAEs and peermaker.
• 3rd gen: GigE exchange points (mostly nonblocking internal to the switches): PAIX; the rise of Equinix, LINX, AMS-IX.
• 4th/current gen: 10Gig exchange points (upgrades and scale-out of existing IXs through 2 or 3 revs of underlying platform expansion).
How Modern Exchange Points Work
How Modern Exchange Points Work

• Almost exclusively Ethernet based today
 • Driven by the commodity price of Ethernet switches
 • ATM exchanges died at OC12, were replaced by GigE
 • 10GE and Nx10GE has been primary growth for years

• Almost exclusively flat layer 2 VLAN
 • IX will be assigned an IP block (usually a /24, or similar)
 • Each member router will be assigned an IP
 • Any member can talk to any other member via Layer 2
 • Some broadcast traffic (typically ARP) is required
 • But this is typically well policed and a small fraction of traffic.
 • Even the biggest IXs have only a few hundred members.
Example Large IX (LINX) Topology
So What’s Wrong With Existing IXs?
Fragility

• Layer 2 networks are relatively easy to disrupt
 • Forwarding loops, L2 networks have no TTL.
 • Broadcast storms, traffic flooded to all members.
 • Not only can these take down the exchange, but they can take down the members’ entire router if successfully delivered.

• Today we work around these issues by:
 • Locking the port down to a single MAC address.
 • Either strictly hard-coded or via a limit of 1 dynamic MAC.
 • Only a single directly connected router port is allowed.
 • Careful monitoring of member traffic with traffic sniffers.
 • Good IX’s have well trained staff for rapid response.
Accountability

• Most routers have poor or even no mechanisms for measuring traffic exchanged over a layer 2 IX.
• The options in use today are:
 • NetFlow from member router
 • Doesn’t provide MAC layer information, can’t handle inbound traffic.
 • Some popular platforms can’t provide any useful NetFlow data at all.
 • SFlow from member router or from IX operator
 • Still sampled data, can easily be off by +/- 5% or more.
 • MAC accounting from member router
 • Not available on the vast majority of popular platforms today.
• None integrate well with provider 95th % billing systems.
• IX’s are a poor choice for delivering billed services.
Security

- Any member can communicate with any other member, whether this is desired or not.
 - Vulnerable to traffic injection from peers or non-peers.
 - Poor accounting options make this hard to detect.
 - When caught, “failure to set next-hop self” provides easy excuse.
 - Even less security available for selling paid transit.
- Vulnerable to Denial of Service attacks
 - Can even be delivered from the outside world if the IX IP block is announced (as is frequently the case).
- Vulnerable to traffic interception, manipulation
 - ARP/CAM manipulation is trivial on a layer 2 network.
Scalability

- Difficult to scale and debug large layer 2 networks
 - Redundancy is provided through spanning-tree or similar vendor-proprietary protocols to block loops.
 - Large portions of the network must be placed into a blocking state to provide redundancy.
 - Idle capacity wastes money, increasing the cost of service.
 - Spanning-tree or similar protocols provide poor controls over where the traffic will flow in an outage.
 - Constrained to simple ring or star topologies, hard to scale to hundreds of gigabits across multiple locations.
 - Even the largest/best IXs who have successfully built a network to handle 800Gbps+ in 8 locations would have a hard time building to 80 locations, or supporting 8000 members.
Managability

- Poor controls over traffic rates and/or QoS
 - Essentially the ports are wide open and best effort.
 - Any member can send as much traffic as they want.
 - At best traffic controls are completely voluntary.
 - “Hey $Peer, please back off you’re filling my port.”
 - Also makes it a poor choice for selling paid services.

- Difficult to manage multi-router redundancy
 - Multiple routers see the same IX /24 in multiple places.
 - Creates an “anycast” effect to the peer next-hops.
 - Can result in blackholing if there is an IX segmentation.
 - Or if there is an outage which doesn’t drop link state.
Other Issues

• Other issues
 • Inter-network Jumbo Frame support is extremely difficult.
 • No ability to negotiate a per-peer MTU today.
 • Almost impossible to find an acceptable common MTU for everyone.
 • Service is constrained to IP only, between two routers.
 • Must use IX provided IP address block.
 • Cannot use for layer 2 transport handoff.

• Summary
 • L2 IX’s are an inherently fragile and unstable system.
 • We’ve managed to make them work for free peering traffic.
 • But they are still very poor choices for selling or buying services, delivering full transit, transport handoffs, etc.
Engineering a Better Exchange Point
Architecture of an Exchange Point

• The most common architecture of a modern exchange point is a shared broadcast domain.
 • Any member can talk to any other member.
 • Members are given a single IP from a common subnet.
 • Broadcast traffic delivered to every member.
• An alternative is using point-to-point virtual circuits
 • Essentially behaves like a private interconnection (PNI).
 • But adds additional overhead in circuit setup.
Eliminating the Shared Broadcast Domain

• So how would one do this under Ethernet?
 • Point-to-Point virtual circuits between members using 802.1q.
 • Hand off multiple virtual circuit VLANs on a single Interface.

• The concept is not a new one
 • This is how peering used to work over the old ATM exchanges.
 • But this technique was abandoned due to the significant cost and performance advantages of Ethernet over ATM.

• But it turns out, it’s not that simple
 • There are reasons why you can’t just roll out a VLAN based system for point-to-point interconnections over a traditional Ethernet switch.
The Problems with VLAN Exchanges

- The biggest issue is limited VLAN ID space
 - Ethernet VLANs are limited to 4096 possible IDs
 - 802.1q protocol can’t express any more, only a 12 bit ID space.
 - “VLAN stacking” techniques are used to scale this for transport networks, but do not help in this use case.
 - With a traditional Ethernet switch, the VLAN IDs would need to be shared globally across the entire IX.
- This means a 65-member full mesh would completely exhaust all available VLAN IDs.
 - Traditional “VLAN rewrite” solutions don’t help either.
 - Often they just burn both VLAN IDs, doubling exhaustion rate.
 - Also non-deterministic, due to shared resources across port ASICs.
The Problems with VLAN Exchanges

• But wait, there’s more…
 • Not only does the IX have to manage its own VLANs
 • But it has to manage what VLANs each member can use
• Most IX members today use “layer 3 switch” routers
 • Comprises essentially the entire market for “cheap” 10GE.
 • But their architecture makes VLAN IDs globally significant
 • If port 1 uses VLAN ID 123, port 2 can’t also independently use it.
 • VLAN 123 is a single global resource across the entire chassis.
 • Also, many platforms can not use the entire 4096 space.
 • And, many “routed” interfaces consume a virtual VLAN.
• Negotiating VLAN IDs would be next to impossible!
Requirements of a New IX Architecture

• Clearly a VLAN-based Ethernet switch won’t work.

• A reasonable solution based on Ethernet must:
 • Expand the virtual circuit ID space significantly.
 • $2^{12} = 4096$ is simply not enough.
 • Decouple 802.1q VLAN IDs from the IX infrastructure.
 • Make VLAN IDs have only local, per-port significance
 • That is, allow VLAN ID reuse on the IX platform across ports.
 • Allow members to choose their own VLAN IDs per VC
 • To avoid conflicts with existing member router VLAN IDs.
 • No “negotiation” of VLAN IDs with either the IX or remote party.

• How could we possibly accomplish all these goals?
• Use MPLS transport rather than Ethernet switching
 • Solves VLAN scaling problems
 • MPLS Pseudowire IDs are 32-bits – Over 4 billion virtual circuits.
 • VLAN ID is no longer carried with the packet, used only on handoff
 • VLAN IDs are no longer a shared resource across the IX or device
 • Solves VLAN ID conflict problems
 • Members could choose their own VLAN ID per VC handoff.
 • There is no requirement that the VLAN ID match the remote party.
• Solves network scaling problems
 • Using MPLS TE is far more flexible than layer 2 protocols.
 • Allows the IX to build more complex topologies, interconnect more locations, and more efficiently utilize resources.
Advantages

• Security
 • Each virtual circuit would be isolated and secure.
 • No mechanism for a third party to inject or sniff traffic.
 • Significantly reduced potential for Denial of Service.

• Accountability
 • Most routers/L3 switches provide SNMP measurement capabilities for their VLAN interfaces/sub-interfaces.
 • Members can now accurately measure traffic on each VC, without “guestimation”, using their standard tools.
 • Capable of integration with most ISP billing systems.
Advantages

• Services
 • With proper security and accountability, delivering or buying paid services (transit, etc) becomes possible.
 • Support for “bandwidth on demand” now possible.
 • No longer constrained to IP-only or one-router-only.
 • Can be used to connect transport circuits, SANs, etc.
 • Provides the features of a metro transport solution or physical cross-connect, but with rapid provisioning.

• Others
 • Jumbo Frame negotiation across shared fabric now possible, since MTU can be configured per subint/vlan.
• Could interconnect with existing metro transport
 • Use Q-in-Q VLAN stacking to “extend” the network onto third party infrastructures.
 • Imagine a single IX platform able to service hundreds or thousands of buildings in a metro region.

• Could auto-negotiate VC setup using a web portal
 • Rapid provisioning using web 2.0 invite/accept model.
 • Could even auto-negotiate things like MTU and VC IPs
 • IX operator could automatically provide /30 (or /31)
 • And members could manage their DNS via the web portal

• Also functions as a transport platform.
Summary

• Existing exchange point architecture mostly works
 • With careful engineering to protect the L2 network
 • With a limited number of locations and chassis
 • Increasingly difficult to stay this way, as colocation facilities run out of space/power, and as data speeds increase.
 • With a significant amount of infrastructure overhead
 • For settlement-free services, but not paid services
 • For IP services only.

• But a new kind of exchange point would be better
 • Could transform a “peering only” platform into a new “ecosystem” model to buy and sell services too.
Send questions, comments, complaints to:

Richard A Steenbergen <ras@nlayer.net>
Avi Freedman <avi@servercentral.net>