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Why Script on Routers?Why Script on Routers?

• What do we mean by “Scripting on Routers?”What do we mean by Scripting on Routers?
• Provide network operators with the ability to write custom 

software which runs on routers to simplify configurationssoftware which runs on routers, to simplify configurations, 
react to network events, and/or automate complex tasks.

• Why do we need scripting on routers?Why do we need scripting on routers?
• Router configurations are complex and often repetitive.

• Scripts can simplify existing repetitive configurations• Scripts can simplify existing repetitive configurations.
• Can also enable new features which might otherwise be impossible.

• Humans frequently make mistakes.Humans frequently make mistakes.
• Scripts can provide complex error checking to prevent accidents.

• Humans cost a lot of money to maintain and administer.y
• Scripts can reduce the manpower necessary to run a network.
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What About Offline Automation?What About Offline Automation?

• We have existing router management tools today• We have existing router management tools today
• Expect/Perl/etc scripting over CLI Telnet/SSH

IETF t d di d N tC f (XML b d) P t l• IETF standardized NetConf (XML based) Protocol
• Some networks are entirely managed offline

With h l i i t t l i t• With no humans logging into routers, only scripts.

• But most networks are still run the old fashioned way
• Writing offline tools requires dedicated/experienced staff.
• It is difficult to pre-plan for every possible configuration.
• Most networks use a mix of tools + standard CLI configs.
• Scripting on the router provides the advantages of router 

management software, while still allowing manual one-offs.
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Some Router Scripting ExamplesSome Router Scripting Examples

E l t ti f 3 t ki t k• Example automation of 3 common networking tasks
• Automated BGP Policy Generation

• Per-ASN BGP communities and their associated policies.
• Other Per-ASN policies such as AS-PATH leak filters.
• All automated and built automatically for every BGP peer• All automated and built automatically for every BGP peer.

• Automated BGP Prefix-Limit Management
• Auto-tuning prefix-limits which adjust to follow changes in BGPAuto tuning prefix limits which adjust to follow changes in BGP.
• Without requiring human intervention to maintain.

• Support case data gathering scriptspp g g p
• Automatically compiles and uploads logs/info when opening cases.
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Automated BGP Policy Generationy
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Automated BGP Policy GenerationAutomated BGP Policy Generation

St t b d fi i “BGP l ti ”• Start by defining a “BGP location” macro:
• Essentially a piece of custom router configuration which 

t i t i t b d b th i t l toperators can maintain, to be used by the script later on.
• Here we define the values for continent, region, and city 

codes to be used for BGP Communities for the routercodes to be used for BGP Communities for the router.
• system {

location {location {
apply-macro bgp {

city 16;y ;
continent 1;
region 2;
…
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Automated BGP Policy GenerationAutomated BGP Policy Generation

• Configure a BGP Peer like normal
protocols {

b {bgp {
group PNI {

import PRIVPEER-IN;
export PRIVPEER-OUT;
neighbor 1.2.3.4 {

description “Example BGP Peer”;p p ;
peer-as 1234;

}
}}

}
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Automated BGP Policy GenerationAutomated BGP Policy Generation

• Commit the configuration, and the script runs.
• The script reads the “location” data from our config:

• var $location = system/location/apply-macro[bgp];
var $continent = $location/data[‘continent’]/value;

$ i $l ti /d t [‘ i ’]/ lvar $region = $location/data[‘region’]/value;
var $city = $location/data[‘city’]/value;

• Calls a function to build policy for every BGP neighbor• Calls a function to build policy for every BGP neighbor
• for-each (protocols/bgp/group/neighbor[peer-as]) {

call example($asn $name $continent $region $city);call example($asn, $name, $continent, $region, $city);
…

}
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Automated BGP Policy GenerationAutomated BGP Policy Generation

Generate some new configurations defining BGP policies• Generate some new configurations defining BGP policies
<policy-statement> {           

<name> "AUTO-COMMUNITY-" _ $name _ "-OUT";
<term> {

<name> "PREPEND_ONE";
<from> {

<community> "MATCH_" _ $name _ "_PREPEND_ONE";
}
<then> {{

<as-path-prepend> $local-as;
}

}}
…
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Automated BGP Policy GenerationAutomated BGP Policy Generation

Generate some new configurations defining BGP communities• Generate some new configurations defining BGP communities
var $regexp   = "((000)|" _ $reg_continent _ "|" _ $reg_continentregion _ "|" _ $reg_city _ ")$";
call jcs:emit-change($tag = 'transient-change', $dot = $path/policy-options) {

with $content = {
<community> {

<name> "MATCH_" _ $name _ "_PREPEND_ONE";
<members> "^" _ $asn _ ":1" _ $regexp;

}
<community> {y {

<name> "MATCH_" _ $name _ "_PREPEND_TWO";
<members> "^" _ $asn _ ":2" _ $regexp;

}}
<community> {

<name> "MATCH_" _ $name _ "_PREPEND_THREE";
<members> "^" $asn ":3" $regexp;<members>  _ $asn _ :3  _ $regexp;

}
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Automated BGP Policy GenerationAutomated BGP Policy Generation

• Script builds per ASN communities/policies for:• Script builds per-ASN communities/policies for:
• Prepend AS-PATH 1x

P d AS PATH 2• Prepend AS-PATH 2x
• Prepend AS-PATH 3x

S• Prepend AS-PATH 4x
• Set BGP MED to 0
• Deny export of BGP route
• Allow export of BGP route (override a broader Deny)

• Also builds generic community tags for the router:
• Match routes from current continent/region/cityg y
• Tag route learned in current continent/region/city
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Automated BGP Policy GenerationAutomated BGP Policy Generation
• Dynamically creates community expressions that look like this:y y y p

community MATCH_3356_PREPEND_ONE members "^3356:1((000)|(010)|(012)|(116))$";
community MATCH_3356_PREPEND_TWO members "^3356:2((000)|(010)|(012)|(116))$";
community MATCH 3356 PREPEND THREE members "^3356:3((000)|(010)|(012)|(116))$";y _ _ _ (( )|( )|( )|( ))$ ;
community MATCH_3356_PREPEND_FOUR members "^3356:4((000)|(010)|(012)|(116))$";
community MATCH_3356_MED_ZERO members "^3356:5((000)|(010)|(012)|(116))$";
community MATCH_3356_DENY_EXPORT members "^3356:6((000)|(010)|(012)|(116))$";y (( )|( )|( )|( ))
community MATCH_3356_FORCE_EXPORT members "^3356:9((000)|(010)|(012)|(116))$";

• And the policies which reference these expressions
term PREPEND ONE {term PREPEND_ONE {

from community MATCH_3356_PREPEND_ONE;
then as-path-prepend “1234”;

}}
term PREPEND_TWO {

from community MATCH_3356_PREPEND_TWO;
then as-path-prepend “1234 1234";then as path prepend 1234 1234 ;

}
…
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Automated BGP Policy GenerationAutomated BGP Policy Generation

Al f l f b ildi AS PATH l k filt• Also useful for building AS-PATH leak filters
• Define a list of major ASNs you only want to hear “directly”

Bl k t ith f th d ASN i th AS PATH if• Block any route with one of these reserved ASNs in the AS-PATH if 
the route didn’t come directly from one of those ASNs.

• Useful for preventing leaks and suboptimal routing.p g p g
• If I peer directly with AS701, I don’t ever want to accept a route with 

701 in the AS-PATH from anyone other than a AS701 neighbor.
• The same script can build a per-peer AS-PATH filter which 

blocks every ASN on the list except the ASN of the peer.
• This can’t be done via RegExp in Cisco or Juniper (or any other• This can t be done via RegExp in Cisco or Juniper (or any other 

major router vendor) today, a per-ASN AS-PATH filter policy is 
the only way to accomplish this task.

• This filter is highly effective at blocking accidental leaks.
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Automated BGP Policy GenerationAutomated BGP Policy Generation

Al f l f b ildi li f k• Also useful for building policy frameworks
• Script scan for the existence of a policy with a standard 

( POLICY AS#### IN) f BGP i hbname (e.g. POLICY-AS####-IN) for every BGP neighbor.
• If the policy exists, it is automatically linked in to the policy 

chain as a “subroutine” to existing standardized policieschain as a “subroutine” to existing standardized policies.
• The standardized policy enforces certain requirements for 

the BGP neighbor such as the BGP Community tagthe BGP neighbor, such as the BGP Community tag.
• While also allowing operations staff to tweak the route.
• Allow your operations staff to tweak a local pref or a MED• Allow your operations staff to tweak a local-pref or a MED 

without ever being able to accidentally leak the route.
• Simplifies BGP configuration policies linked automatically• Simplifies BGP configuration, policies linked automatically.

By Richard Steenbergen, nLayer Communications, Inc. 14



Automated BGP Policy GenerationAutomated BGP Policy Generation

• Insert the newly created policies into the import/export policy chains

f h ( t l /b / / i hb [ ]) {for-each (protocols/bgp/group/neighbor[peer-as]) {
var $import = jcs:first-of(import, ../import, ../../import);
var $export = jcs:first-of(export, ../export, ../../export);
var $in first = $import[position() = 1];var $in_first  $import[position()  1];
var $out_first = $export[position() = 1];

call jcs:emit-change($tag = 'transient-change') {
with $content = {

<import> $import;
<import insert="after" name=$in_first> "AUTOCOMM-" _ peer-as _ "-IN";             
<export> $export;<export> $export;
<export insert="after" name=$out_first> "AUTOCOMM-“ _ peer-as _ "-OUT";

}
}}

}
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Automated BGP Policy GenerationAutomated BGP Policy Generation

S i t R lt• Script Results
• Script automatically generates and maintains 44 lines of new 

router configuration for every configured BGP peerrouter configuration for every configured BGP peer.
• Script automatically build many of the BGP community 

definitions for the router.
• Script automatically links all the new policies together correctly, 

avoiding rote human effort and potential mistakes.

• The Net Effect
• For routers with hundreds of BGP peers, thousands of lines of 

configuration are automated, the user visible config is simplified.
• Enables new features (per-ASN communities, leak filters, policy 

frame ork etc) that most net orks don’t implement todaframework, etc) that most networks don’t implement today.
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Automated BGP Prefix-Limit Managementg
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BGP Prefix LimitsBGP Prefix Limits

• Operators use BGP prefix-limits as policy safety nets
• If a BGP neighbor sends more prefixes than we believe is 

normal, drop the BGP session for a certain period of time.
• Somewhat effective at protecting against the propagation 

of major leaks, and a commonly used tool for most peers.
• But they are somewhat difficult to maintain

• The concept of “normal” is always evolving, as networks 
grow, shrink, or otherwise change their announcements.

• Stale prefix-limit configurations are probably responsible 
for thousands of peering outages every year.

• But keeping the limits set at sensible values is hard work.
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Use Router Scripting to Automate LimitsUse Router Scripting to Automate Limits

• How do you determine a sensible prefix limit?
• Typically based on the number of current prefixes.
• Plus some percentage extra for growth
• Plus some fixed number to handle small prefix counts.
• Example: (PfxCnt*1.25)+500

• But you also want to react to changes slowlyBut you also want to react to changes slowly
• Don’t slash your prefix-limit because the peer happens to 

be announcing 0 prefixes due to an outage one night.be announcing 0 prefixes due to an outage one night.
• Use a weighted moving average to adjust the limit slowly 

over time, towards the newly computed value., y p
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Use Router Scripting to Automate LimitsUse Router Scripting to Automate Limits

• Write a script to update the prefix-limit accordingly.
• Have it run automatically on the router every night.
• Allow a manual run to tune the limits if necessary.

var $config = jcs:invoke($get-config)/configuration/protocols/bgp;
var $neighbors = jcs:invoke('get-bgp-summary-information');

for-each ($config/group/neighbor[peer-as]) {
var $address = name;
var $neighbor = $neighbors/bgp-peer[peer-address == $address];var $neighbor  $neighbors/bgp peer[peer address  $address];
var $pfxlimit = apply-macro[name == 'prefix-limit']/data[name == 'inet'];
var $pfxrecv = $neighbor/bgp-rib[name == 'inet.0']/received-prefix-count;
var $rcvlimit = ceiling((($pfxrecv * 1.25) + 500) div 500) * 500;$ g((($p ) ) ) ;
…
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Automating Support Casesg pp
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Opening Vendor Support CasesOpening Vendor Support Cases

• We all find bugs or need to open support cases
• Many times gathering the support information and 

uploading them to the Vendor can be long and painful.
• Support information, current configuration, scripts, log 

files, on the active and backup management cards, etc.
• Solution: Automate it with a script

• Gather the most common log files and support 
components, and automatically upload them to the 
vendor FTP site.
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Gather and Upload the DataGather and Upload the Data
var $dest = jcs:first-of($destination, "ftp://ftp.juniper.net/pub/incoming/");
var $support = jcs:invoke('get-support-information');
var $config  = jcs:invoke('get-configuration');
call upload($file = $re _ ":/tmp/support", $dest = $dest _ $case);            

$ $ $ $ $call upload($file = $re _ ":/tmp/configuration", $dest = $dest _ $case);        
call upload($file = $re _ ":/var/log/messages", $dest = $dest _ $case);         
call upload($file = $re _ ":/var/log/chassisd", $dest = $dest _ $case); 
…
var $filename = jcs:regex("[^\/]+$", $file)[1];
var $destfile =  $hostname _ "." _ $filename;
var $copy upload = {var $copy_upload = {

<file-copy> {
<source> $tmpfile;
<destination> $dest "/" $destfile;<destination> $dest _ /  _ $destfile;

}
}

<output> "Uploading " $filename " to " $dest;<output> Uploading  _ $filename _  to  _ $dest;
jcs:invoke($copy_upload);
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How Effective Is It?How Effective Is It?

• Router configuration size reduced by 62%

ras@randomrouter> show configuration | countras@randomrouter> show configuration | count 
Count: 2587 lines

ras@randomrouter> show configuration | display commit-scripts | count
Count: 6742 lines
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Send questions, comments, complaints to:q p

Richard A Steenbergen ras@nlayer.net


