
Scripting on Routersp g

Richard A Steenbergen <ras@nlayer.net> nLayer Communications, Inc.

By Richard Steenbergen, nLayer Communications, Inc. 1

Why Script on Routers?Why Script on Routers?

• What do we mean by “Scripting on Routers?”What do we mean by Scripting on Routers?
• Provide network operators with the ability to write custom

software which runs on routers to simplify configurationssoftware which runs on routers, to simplify configurations,
react to network events, and/or automate complex tasks.

• Why do we need scripting on routers?Why do we need scripting on routers?
• Router configurations are complex and often repetitive.

• Scripts can simplify existing repetitive configurations• Scripts can simplify existing repetitive configurations.
• Can also enable new features which might otherwise be impossible.

• Humans frequently make mistakes.Humans frequently make mistakes.
• Scripts can provide complex error checking to prevent accidents.

• Humans cost a lot of money to maintain and administer.y
• Scripts can reduce the manpower necessary to run a network.

By Richard Steenbergen, nLayer Communications, Inc. 2

What About Offline Automation?What About Offline Automation?

• We have existing router management tools today• We have existing router management tools today
• Expect/Perl/etc scripting over CLI Telnet/SSH

IETF t d di d N tC f (XML b d) P t l• IETF standardized NetConf (XML based) Protocol
• Some networks are entirely managed offline

With h l i i t t l i t• With no humans logging into routers, only scripts.

• But most networks are still run the old fashioned way
• Writing offline tools requires dedicated/experienced staff.
• It is difficult to pre-plan for every possible configuration.
• Most networks use a mix of tools + standard CLI configs.
• Scripting on the router provides the advantages of router

management software, while still allowing manual one-offs.
By Richard Steenbergen, nLayer Communications, Inc. 3

Some Router Scripting ExamplesSome Router Scripting Examples

E l t ti f 3 t ki t k• Example automation of 3 common networking tasks
• Automated BGP Policy Generation

• Per-ASN BGP communities and their associated policies.
• Other Per-ASN policies such as AS-PATH leak filters.
• All automated and built automatically for every BGP peer• All automated and built automatically for every BGP peer.

• Automated BGP Prefix-Limit Management
• Auto-tuning prefix-limits which adjust to follow changes in BGPAuto tuning prefix limits which adjust to follow changes in BGP.
• Without requiring human intervention to maintain.

• Support case data gathering scriptspp g g p
• Automatically compiles and uploads logs/info when opening cases.

By Richard Steenbergen, nLayer Communications, Inc. 4

Automated BGP Policy Generationy

By Richard Steenbergen, nLayer Communications, Inc. 5

Automated BGP Policy GenerationAutomated BGP Policy Generation

St t b d fi i “BGP l ti ”• Start by defining a “BGP location” macro:
• Essentially a piece of custom router configuration which

t i t i t b d b th i t l toperators can maintain, to be used by the script later on.
• Here we define the values for continent, region, and city

codes to be used for BGP Communities for the routercodes to be used for BGP Communities for the router.
• system {

location {location {
apply-macro bgp {

city 16;y ;
continent 1;
region 2;
…

By Richard Steenbergen, nLayer Communications, Inc. 6

Automated BGP Policy GenerationAutomated BGP Policy Generation

• Configure a BGP Peer like normal
protocols {

b {bgp {
group PNI {

import PRIVPEER-IN;
export PRIVPEER-OUT;
neighbor 1.2.3.4 {

description “Example BGP Peer”;p p ;
peer-as 1234;

}
}}

}

By Richard Steenbergen, nLayer Communications, Inc. 7

Automated BGP Policy GenerationAutomated BGP Policy Generation

• Commit the configuration, and the script runs.
• The script reads the “location” data from our config:

• var $location = system/location/apply-macro[bgp];
var $continent = $location/data[‘continent’]/value;

$ i $l ti /d t [‘ i ’]/ lvar $region = $location/data[‘region’]/value;
var $city = $location/data[‘city’]/value;

• Calls a function to build policy for every BGP neighbor• Calls a function to build policy for every BGP neighbor
• for-each (protocols/bgp/group/neighbor[peer-as]) {

call example($asn $name $continent $region $city);call example($asn, $name, $continent, $region, $city);
…

}

By Richard Steenbergen, nLayer Communications, Inc. 8

Automated BGP Policy GenerationAutomated BGP Policy Generation

Generate some new configurations defining BGP policies• Generate some new configurations defining BGP policies
<policy-statement> {

<name> "AUTO-COMMUNITY-" _ $name _ "-OUT";
<term> {

<name> "PREPEND_ONE";
<from> {

<community> "MATCH_" _ $name _ "_PREPEND_ONE";
}
<then> {{

<as-path-prepend> $local-as;
}

}}
…

By Richard Steenbergen, nLayer Communications, Inc. 9

Automated BGP Policy GenerationAutomated BGP Policy Generation

Generate some new configurations defining BGP communities• Generate some new configurations defining BGP communities
var $regexp = "((000)|" _ $reg_continent _ "|" _ $reg_continentregion _ "|" _ $reg_city _ ")$";
call jcs:emit-change($tag = 'transient-change', $dot = $path/policy-options) {

with $content = {
<community> {

<name> "MATCH_" _ $name _ "_PREPEND_ONE";
<members> "^" _ $asn _ ":1" _ $regexp;

}
<community> {y {

<name> "MATCH_" _ $name _ "_PREPEND_TWO";
<members> "^" _ $asn _ ":2" _ $regexp;

}}
<community> {

<name> "MATCH_" _ $name _ "_PREPEND_THREE";
<members> "^" $asn ":3" $regexp;<members> _ $asn _ :3 _ $regexp;

}

By Richard Steenbergen, nLayer Communications, Inc. 10

Automated BGP Policy GenerationAutomated BGP Policy Generation

• Script builds per ASN communities/policies for:• Script builds per-ASN communities/policies for:
• Prepend AS-PATH 1x

P d AS PATH 2• Prepend AS-PATH 2x
• Prepend AS-PATH 3x

S• Prepend AS-PATH 4x
• Set BGP MED to 0
• Deny export of BGP route
• Allow export of BGP route (override a broader Deny)

• Also builds generic community tags for the router:
• Match routes from current continent/region/cityg y
• Tag route learned in current continent/region/city

By Richard Steenbergen, nLayer Communications, Inc. 11

Automated BGP Policy GenerationAutomated BGP Policy Generation
• Dynamically creates community expressions that look like this:y y y p

community MATCH_3356_PREPEND_ONE members "^3356:1((000)|(010)|(012)|(116))$";
community MATCH_3356_PREPEND_TWO members "^3356:2((000)|(010)|(012)|(116))$";
community MATCH 3356 PREPEND THREE members "^3356:3((000)|(010)|(012)|(116))$";y _ _ _ (()|()|()|())$;
community MATCH_3356_PREPEND_FOUR members "^3356:4((000)|(010)|(012)|(116))$";
community MATCH_3356_MED_ZERO members "^3356:5((000)|(010)|(012)|(116))$";
community MATCH_3356_DENY_EXPORT members "^3356:6((000)|(010)|(012)|(116))$";y (()|()|()|())
community MATCH_3356_FORCE_EXPORT members "^3356:9((000)|(010)|(012)|(116))$";

• And the policies which reference these expressions
term PREPEND ONE {term PREPEND_ONE {

from community MATCH_3356_PREPEND_ONE;
then as-path-prepend “1234”;

}}
term PREPEND_TWO {

from community MATCH_3356_PREPEND_TWO;
then as-path-prepend “1234 1234";then as path prepend 1234 1234 ;

}
…

By Richard Steenbergen, nLayer Communications, Inc. 12

Automated BGP Policy GenerationAutomated BGP Policy Generation

Al f l f b ildi AS PATH l k filt• Also useful for building AS-PATH leak filters
• Define a list of major ASNs you only want to hear “directly”

Bl k t ith f th d ASN i th AS PATH if• Block any route with one of these reserved ASNs in the AS-PATH if
the route didn’t come directly from one of those ASNs.

• Useful for preventing leaks and suboptimal routing.p g p g
• If I peer directly with AS701, I don’t ever want to accept a route with

701 in the AS-PATH from anyone other than a AS701 neighbor.
• The same script can build a per-peer AS-PATH filter which

blocks every ASN on the list except the ASN of the peer.
• This can’t be done via RegExp in Cisco or Juniper (or any other• This can t be done via RegExp in Cisco or Juniper (or any other

major router vendor) today, a per-ASN AS-PATH filter policy is
the only way to accomplish this task.

• This filter is highly effective at blocking accidental leaks.
By Richard Steenbergen, nLayer Communications, Inc. 13

Automated BGP Policy GenerationAutomated BGP Policy Generation

Al f l f b ildi li f k• Also useful for building policy frameworks
• Script scan for the existence of a policy with a standard

(POLICY AS#### IN) f BGP i hbname (e.g. POLICY-AS####-IN) for every BGP neighbor.
• If the policy exists, it is automatically linked in to the policy

chain as a “subroutine” to existing standardized policieschain as a “subroutine” to existing standardized policies.
• The standardized policy enforces certain requirements for

the BGP neighbor such as the BGP Community tagthe BGP neighbor, such as the BGP Community tag.
• While also allowing operations staff to tweak the route.
• Allow your operations staff to tweak a local pref or a MED• Allow your operations staff to tweak a local-pref or a MED

without ever being able to accidentally leak the route.
• Simplifies BGP configuration policies linked automatically• Simplifies BGP configuration, policies linked automatically.

By Richard Steenbergen, nLayer Communications, Inc. 14

Automated BGP Policy GenerationAutomated BGP Policy Generation

• Insert the newly created policies into the import/export policy chains

f h (t l /b / / i hb []) {for-each (protocols/bgp/group/neighbor[peer-as]) {
var $import = jcs:first-of(import, ../import, ../../import);
var $export = jcs:first-of(export, ../export, ../../export);
var $in first = $import[position() = 1];var $in_first $import[position() 1];
var $out_first = $export[position() = 1];

call jcs:emit-change($tag = 'transient-change') {
with $content = {

<import> $import;
<import insert="after" name=$in_first> "AUTOCOMM-" _ peer-as _ "-IN";
<export> $export;<export> $export;
<export insert="after" name=$out_first> "AUTOCOMM-“ _ peer-as _ "-OUT";

}
}}

}

By Richard Steenbergen, nLayer Communications, Inc. 15

Automated BGP Policy GenerationAutomated BGP Policy Generation

S i t R lt• Script Results
• Script automatically generates and maintains 44 lines of new

router configuration for every configured BGP peerrouter configuration for every configured BGP peer.
• Script automatically build many of the BGP community

definitions for the router.
• Script automatically links all the new policies together correctly,

avoiding rote human effort and potential mistakes.

• The Net Effect
• For routers with hundreds of BGP peers, thousands of lines of

configuration are automated, the user visible config is simplified.
• Enables new features (per-ASN communities, leak filters, policy

frame ork etc) that most net orks don’t implement todaframework, etc) that most networks don’t implement today.

By Richard Steenbergen, nLayer Communications, Inc. 16

Automated BGP Prefix-Limit Managementg

By Richard Steenbergen, nLayer Communications, Inc. 17

BGP Prefix LimitsBGP Prefix Limits

• Operators use BGP prefix-limits as policy safety nets
• If a BGP neighbor sends more prefixes than we believe is

normal, drop the BGP session for a certain period of time.
• Somewhat effective at protecting against the propagation

of major leaks, and a commonly used tool for most peers.
• But they are somewhat difficult to maintain

• The concept of “normal” is always evolving, as networks
grow, shrink, or otherwise change their announcements.

• Stale prefix-limit configurations are probably responsible
for thousands of peering outages every year.

• But keeping the limits set at sensible values is hard work.
By Richard Steenbergen, nLayer Communications, Inc. 18

Use Router Scripting to Automate LimitsUse Router Scripting to Automate Limits

• How do you determine a sensible prefix limit?
• Typically based on the number of current prefixes.
• Plus some percentage extra for growth
• Plus some fixed number to handle small prefix counts.
• Example: (PfxCnt*1.25)+500

• But you also want to react to changes slowlyBut you also want to react to changes slowly
• Don’t slash your prefix-limit because the peer happens to

be announcing 0 prefixes due to an outage one night.be announcing 0 prefixes due to an outage one night.
• Use a weighted moving average to adjust the limit slowly

over time, towards the newly computed value., y p

By Richard Steenbergen, nLayer Communications, Inc. 19

Use Router Scripting to Automate LimitsUse Router Scripting to Automate Limits

• Write a script to update the prefix-limit accordingly.
• Have it run automatically on the router every night.
• Allow a manual run to tune the limits if necessary.

var $config = jcs:invoke($get-config)/configuration/protocols/bgp;
var $neighbors = jcs:invoke('get-bgp-summary-information');

for-each ($config/group/neighbor[peer-as]) {
var $address = name;
var $neighbor = $neighbors/bgp-peer[peer-address == $address];var $neighbor $neighbors/bgp peer[peer address $address];
var $pfxlimit = apply-macro[name == 'prefix-limit']/data[name == 'inet'];
var $pfxrecv = $neighbor/bgp-rib[name == 'inet.0']/received-prefix-count;
var $rcvlimit = ceiling((($pfxrecv * 1.25) + 500) div 500) * 500;$ g((($p))) ;
…

By Richard Steenbergen, nLayer Communications, Inc. 20

Automating Support Casesg pp

By Richard Steenbergen, nLayer Communications, Inc. 21

Opening Vendor Support CasesOpening Vendor Support Cases

• We all find bugs or need to open support cases
• Many times gathering the support information and

uploading them to the Vendor can be long and painful.
• Support information, current configuration, scripts, log

files, on the active and backup management cards, etc.
• Solution: Automate it with a script

• Gather the most common log files and support
components, and automatically upload them to the
vendor FTP site.

By Richard Steenbergen, nLayer Communications, Inc. 22

Gather and Upload the DataGather and Upload the Data
var $dest = jcs:first-of($destination, "ftp://ftp.juniper.net/pub/incoming/");
var $support = jcs:invoke('get-support-information');
var $config = jcs:invoke('get-configuration');
call upload($file = $re _ ":/tmp/support", $dest = $dest _ $case);

$ $ $ $ $call upload($file = $re _ ":/tmp/configuration", $dest = $dest _ $case);
call upload($file = $re _ ":/var/log/messages", $dest = $dest _ $case);
call upload($file = $re _ ":/var/log/chassisd", $dest = $dest _ $case);
…
var $filename = jcs:regex("[^\/]+$", $file)[1];
var $destfile = $hostname _ "." _ $filename;
var $copy upload = {var $copy_upload = {

<file-copy> {
<source> $tmpfile;
<destination> $dest "/" $destfile;<destination> $dest _ / _ $destfile;

}
}

<output> "Uploading " $filename " to " $dest;<output> Uploading _ $filename _ to _ $dest;
jcs:invoke($copy_upload);

By Richard Steenbergen, nLayer Communications, Inc. 23

How Effective Is It?How Effective Is It?

• Router configuration size reduced by 62%

ras@randomrouter> show configuration | countras@randomrouter> show configuration | count
Count: 2587 lines

ras@randomrouter> show configuration | display commit-scripts | count
Count: 6742 lines

By Richard Steenbergen, nLayer Communications, Inc. 24

Send questions, comments, complaints to:q p

Richard A Steenbergen ras@nlayer.net

