DNSSEC Goes Mainstream: Deployment Incentives, Experience, and Questions

Suzanne Woolf, ISC
Introduction

• What’s DNSSEC and what problem does it solve?
• OK, so why isn’t it deployed yet?
 – Economics
 – Operations
• What do you mean, it’s being deployed?
• So what do I do now?
 – Experience we’ve had
 – Experience you can be part of
What’s DNSSEC?

• Adds authentication to the DNS
 – Digital signatures (public key crypto)
 – Carried in DNS resource records
 – You know the message you got is what was sent

• That’s all. Really.

• Does not:
 – Hide or encrypt anything
 – Prevent DDoS or otherwise protect servers
What Problem does DNSSEC Solve?

• Vanilla DNS is credulous enough to believe almost anything from almost anybody
• Once it’s believed a bad answer, a resolver will keep repeating it, too.
• Some basic street smarts added over the years, but DNS is still pretty naive
Is This a Problem We Actually Have?

• Attacking DNS was simple, but attacking other things was even simpler
 – People (phishing)
 – Machines (worms/viruses)
 – Networks (compromised routers, hijacked addresses)

• So, for a long time: Nope, it’s not.
All Dressed Up, No Place to Go

• DNSSEC standards issued in 2004.
• Support in widely used open source nameservers also in 2004
• And we waited
 – Costs some, in resources (bw, cpu, clue)
 – Benefits unclear (the usual chicken-and-egg, and didn’t solve a really pressing problem)
So Why Are We Here?

- Remember about cache poisoning? Not a problem we have, right?
- March 2008, Dan Kaminsky discovers a way to turbocharge a well-known attack.
- Now cache poisoning is a problem we have.
- Remember DNSSEC? Awkward, expensive, not clearly good for much?
- Now DNSSEC solves a problem we have.
Overnight Success

• A handful of TLDs are signed now
 – .se signed last year
 – .gov signed early this year
 – .org signed in the last couple of weeks

• Other TLD operators are evaluating
 – Informally discussed plans for .mil, .edu, .uk, others....maybe even .com?

• IANA is publishing TLD trust anchors
 – Root is not signed
 – But there's a list of trust anchors from IANA
Oh and the root zone....

• Authority here is US Department of Commerce
 – Notice of Inquiry on DNSSEC, Oct. 2008
 – Key management gets wrapped in Layer 9

• Announced cooperative effort with ICANN and Verisign on “an initiative to enhance the security and stability of the Internet.”
 – Interim plan, recognizes experience and evolution are needed
 – Goal is year-end deployment
Root zone mechanics

- **ICANN's role**
 - Operates IANA, due diligence on all root zone changes

- **Verisign's role**
 - Generates the root zone
 - Manages zone signing keys

- **NTIA's role**
 - Continue to audit changes to root zone
 - Final decisions on management of key signing keys (joint plan of Verisign and ICANN)
Early experience: .gov

• .gov live in Feb 2009
 – Formally announced Sept. 2008
 – Goal is for subdomains to be signed Dec. 2009

• Signed with NSEC3
 – NSEC3 prevents enumeration of zone
 – Newer variant, some unknowns

• Early results are encouraging
 – Registry interface works
 – Key rollover events successfully performed
 – .gov key in IANA TLD key repository
Things to ponder: EDNS0

• EDNS0 extension to DNS “modernizes” the protocol
 – Packet size negotiation
 – Option fields

• EDNS0 with DO option set is required for DNSSEC
 – “DO=1” = “I won't die if I see DNSSEC data”
 – Assumes large enough packets to carry larger answers
 – Often set by default
Things to ponder: packet sizes

• EDNS0 provides for packet size negotiation
 – Starts large
 – Falls back smaller and smaller
 – Can go down to 512 bytes

• What if DNSSEC answer doesn't fit in negotiated packet?
 – TC bit (truncate) is set
 – Triggers fallback to TCP, which doesn't scale
 – Protocol fix under discussion: ignore DO if packet size is inadequate
Things to ponder: middleboxes

- Many stateful firewalls think they know what DNS packets look like
- DNSSEC-Signed answers are different
 - DNSSEC RRs do not look like other RRs
 - EDNS0 packets do not look like older DNS packets
- Much SOHO gear does the wrong thing by default, which can result in dropped answers.
Things We Still Don’t Know (1)

• Uptake further down the tree
 – Business case for DNSSEC: what risks does it really mitigate?
 – Does having DNSSEC change anything if you don’t use it?
 – How much is the resource commit, really?
• Widespread DNSSEC: what changes?
 – Scaling DNS (including the root zone)
 – Expectations: does a more trustworthy DNS enable other things?
Things We Still Don't Know (2)

- Key management is important.
 - Rollback is hard
 - Still evolving BCPs on algorithms, lifetimes, and other key characteristics
 - Where do you put them? (a TARpit)
- It’s still hard to get people to pay for security
 - Registrars see no value proposition
 - TLDs are not charging
Conclusions

- DNSSEC is fairly complex technology
- That solves a problem we have, now
- With some costs,
- Providing some new potential, so
- *If you've been waiting for DNSSEC to be “for real”, your time is now.*
 - If you manage DNS zones, look into signing them
 - If you run large resolvers, look at what will happen when you're receiving signed data
And a little help from our friends

• Folks here from:
 – Comcast DNS group
 – Afilias (.org operator)

• DNSSEC Signed Root Deployment Symposium
 – Gathering of DNSSEC experts June 11-12
 – Results appearing soon

• Ongoing data-gathering by early adopters