
Lessons Learned

(aka what’s transpired in these halls,

but wasn’t intuitively obvious the

first time)

Agenda

• Overview/Background

• POP architecture

• IGP design and pitfalls

• BGP design and pitfalls

• MPLS TE design and pitfalls

• Monitoring pointers

• Next steps

Overview

• Pete Templin, pete.templin@texlink.com

– ‘Chief Card Slinger’ for a telecom/ISP

– Hybrid engineering/ops position

• Recently acquired, now “strictly”

engineering.

– IP Engineer for a telecom/ISP

Objective: Simplicity

• “Be realistic about the complexity-opex

tradeoff.” Dave Meyer

• Be realistic about the complexity, period.

– Simple suggests troubleshootable.

– Simple suggests scalable.

– Simple suggests you can take vacation.

Be the router.

• When engineering a network, remember to

think like a router.

• When troubleshooting a problem, remember

to think like a router.

– Think packet processing sequence, forwarding

lookup method, etc. on THIS router.

• Work your way through the network.

– Router by router.

Background

• {dayjob} grew from four routers (one per

POP), DS3 backbone, and 5Mbps Internet

traffic in 2003…

• …to 35 routers (4 POPs and a carrier hotel

presence), NxDS3 backbone, and 200Mbps

Internet in 2006…

• …and another 50Mbps since then.

When I started…

• …I inherited a four-city network

– Total internet connectivity was 4xT1

– Static routes to/from the Internet

– Static routes within the network

– Scary NAT process for corporate offices

Initial challenges

• Riverstone routers – unknown to everyone

• Quickly found flows-per-second limits of

our processors and cards

• We planned city-by-city upgrades, using the

concepts to follow.

Starting point

• Everything starts with one router.

• You might run out of slots/ports.

• You might run out of memory.

• You might run out of processor(s).

• Whatever is your limiting factor, it’s then

time to plan your upgrade.

Hardware complexity

• Once you grow beyond a single router,

you’ll likely find that you need to become

an expert in each platform you use.

– Plan for this learning curve.

– Treat product sub-lines separately

• VIP2 vs. VIP4 in 7500s

• GSR Engine revisions

• Cat6 linecards (still learning here…)

Redundancy

• Everyone wants to hear that you have a

redundant network.

• Multiple routers doesn’t ensure redundancy

– proper design with those routers will help.

• If you hook router2 to router1, router2 is

completely dependent on router1.

Initial design

• Two-tier model

– Core tier handled intercity, upstream

• Two core routers per POP

– Distribution tier handled customer connections

• Distinct routers suited for particular connections:

– Fractional and full T1s

– DS3 and higher WAN technologies

– Ethernet services

Initial Core Design

• Two parallel LANs per POP to tie things

together.

– Two Ethernet switches

– Each core router connects to both LANs

– Each dist router connects to both LANs

Two core L2 switches

Pitfalls of two core L2 switches

• Convergence issues:

– R1 doesn’t know that R2 lost a link until timers
expire – multiaccess topology.

• Capacity issues:

– Transmitting routers aren’t aware of receiving
routers’ bottlenecks

• Troubleshooting issues:

– What’s the path from R1 to R2?

Removal of L2 switches

• In conjunction with hardware upgrades, we

transitioned our topology:

– Core routers connect to each other

• Parallel links, card-independent.

– Core routers connect to each dist router

• Logically point-to-point links, even though many

were Ethernet.

Two core routers
core1

core2

Results of topology change

• Core routers know the link state to every

other router.

– Other routers know link state to the core, and

that’s all they need to know.

• Routing became more predictable.

• Queueing became more predictable.

Core/Edge separation

• Originally, our core routers carried our

upstream connections.

• Bad news:

– IOS BGP PSA rule 9: “Prefer the external BGP

(eBGP) path over the iBGP path.”

– Inter-POP traffic left by the logically closest

link unless another link was drastically better.

Lack of Core/Edge separation

core1 core2City 2 City 3

Lack of Core/Edge separation

• Traffic inbound from city 2 wanted to leave

via core1’s upstream, since it was an eBGP

path.

– City2 might have chosen a best path from

core2’s upstream, but since each router makes a

new routing decision, core1 sends it out its

upstream.

Lack of Core/Edge separation

Problem analysis

• City1 core1 prefers most paths out its

upstream, since it’s an external path.

• City1 core2 prefers most paths out its

upstream, since it’s an external path.

• City2 core routers learn both paths via BGP.

• City2 core routers select best path as City1

core2, for one reason or another.

Problem analysis

• City2 sends packets destined for Internet

towards City1 core1.

– BGP had selected City1 core2’s upstream

– IGP next-hop towards C1c2 was C1c1.

• Packets arrive on City1 core1

• City1 core1 performs IP routing lookup on

packet, finds best path as its upstream link.

Lack of Core/Edge separation

Problem resolution

• Kept two-layer hierarchy, but split

distribution tier into two types:

– Distribution routers continued to handle

customer connections.

– Edge routers began handling upstream

connections.

Core/Edge separation

core1 core2City 2 City 3

Resulting topology

• Two core routers connect to each other

– Preferably over two card-independent links

• Split downstream and upstream roles:

– Downstream connectivity on “distribution”

routers

• Each dist router connects to both core routers.

– Upstream connectivity on “edge” routers

• Each edge router connects to both core routers.

Alternate resolution

• MPLS backbone

– Ingress distribution router performs IP lookup,

finds best egress router/path, applies label

corresponding to that egress point.

– Intermediate core router(s) forward packet

based on label, unaware of destination IP

address.

– Egress router handles as normal.

IGP Selection

• Choices: RIPv2, OSPF, ISIS, EIGRP

• Ruled out RIPv2

• Ruled out EIGRP (Cisco proprietary)

• That left OSPF and ISIS

– Timeframe and (my) experience led us to OSPF

– Static routed until IGP completed!

IGP Selection

• We switched to ISIS for three supposed

benefits:

– Stability

– Protection (no CLNS from outside)

– Isolation (different IGP than MPLS VPNs)

• And have now switched back to OSPF

– IPv6 was easier, for us, with OSPF

IGP design

• Keep your IGP lean:

– Device loopbacks

– Inter-device links

– Nothing more

• Everything else in BGP

– Made for thousands of routes

– Administrative control, filtering

IGP metric design

• Credit to Vijay Gill and the ATDN team…

• We started with their model (OSPF-ISIS

migration) and found tremendous simplicity

in it.

• Began with a table of metrics by link rate.

• Add a modifier depending on link role.

Metric table

• 1 for OC768/XLE

• 2 for OC192/XE

• 3 for OC48

• 4 for GE

• 5 for OC12

• We’ll deal with CE,

CLXE, and/or OC-

3072 later!

• 6 for OC3

• 7 for FE

• 8 for DS3

• 9 for Ethernet

• 10 for DS1

Metric modifiers

• Core-core links are metric=1 regardless of

link.

• Core-dist links are 500 + <table value>.

• Core-edge links are 500 + <table value>.

• WAN links are 30 + <table value>.

• Minor tweaks for BGP tuning purposes.

– Watch equidistant multipath risks!

Metric tweaks

• Link undergoing maintenance: 10000 +

<normal value>

• Link out of service: 20000 + <normal

value>

• Both tweaks preserve the native metric

– Even if we’ve deviated, it’s easy to restore

Benefits of metric design

• Highly predictable traffic flow

– Under normal conditions

– Under abnormal conditions

• I highly recommend an awareness of the

shortest-path algorithm:

– Traffic Engineering with MPLS, Cisco Press

– My NANOG37 tutorial (see above book…)

Metric design and link failure

• Distribution/edge routers aren’t sized to

handle transitory traffic.

• Distribution/edge routers might not have

proper transit features enabled/configured.

• If the intra-pop core-core link(s) fail:

– We want to route around the WAN to stay at

the core layer.

Metric design and link failure

• Core-dist-core or core-edge-core cost:

– At least 1002 (501 core-dist and 501 dist-core)

• Core-WAN-core cost:

– At least 63 (31 core-cityX, 1 core-core, 31

cityX-core)

– Additional 32-40 per city

• Traffic would rather traverse 23 cities than

go through distribution layer.

IGP metric sample
core1 core2

1

507507

3636

507 507

Pitfalls of metric structure

• Links to AS2914 in Dallas, Houston

– Remember IOS BGP PSA rule 10: “Prefer the

route that can be reached through the closest

IGP neighbor (the lowest IGP metric).”

– SA Core1 was connected to Dallas

• Preferred AS2914 via Dallas

– SA Core2 was connected to Houston

• Preferred AS2914 via Houston

Pitfalls of metric structure

• Dallas was sending some outbound traffic

to AS2914/Houston because of IGP metric.

• Houston Edge1 metrics were changed to

rebalance traffic.

• SA dist routers had BGP multipath enabled.

• Four dist routers ran out of RAM

simultaneously.

BGP design

• BGP is made to scale: use it

– Customer link subnets

– Customer LAN subnets

– External routes

• BGP has great filtering tools: use them

– Filter at every ingress and route injection point

– Apply an internal community

BGP scaling pitfalls

• Confederations didn’t work well for us

– One sub-AS per POP meant each router was its

own sub-AS.

– Convergence was painful; sub AS path tried to

be an IGP.

• Removed confederations then deployed

route reflectors

– No client-client reflection for easier scaling.

BGP at distribution layer

• Redistribute connected routes into BGP

– Exclude the interfaces already handled in IGP
• Oops: don’t write your route map to exclude by

interface name. One failed VIP or LC now causes a
deny-all

• Instead, exclude your IGP interfaces by prefix list.

• Redistribute static routes into BGP

• No customer configurations are needed
anywhere else

BGP local-pref design

• Transit: cost$ money

• Peering: usually low or no cost

• Customers: revenue

• Treat prefixes appropriate to dollars

– Prefer to send to customer rather than through

peering or transit

– Often used: local preference

Local preference design

• Customer LP = 400

• Peer LP = 300

• Transit LP = 200

• Backup LP = 50

• Since default LP is 100, a forgotten or
flawed route map will result in routes that
aren’t used.

– The error will become apparent!

Customer filtering plan

• Filter once on ingress

• Do so aggressively:

– We filter on {prefix, AS-path}

– We allow customer to prepend freely

– We allow customer to truncate the AS-path

• Second and subsequent AS is optional

– We tell customer about filtering rules (and lots

more) at turn-up.

Customer route filtering, part 1

• Accept null-routed aggregate

– Set next-hop for null

– Propagate normally

• Accept aggregate

– Propagate normally

Customer more-specifics filter

• Accept null-routed specific

– Set next-hop for null, mark as no-export

– Propagate internally

• Accept specific w/ ‘override’ community

– Treats as aggregate (propagated out)

– Hopes transits filter on ‘le 24’

– Best-effort option

Customer more-specifics, cont.

• Accept specific

– Mark as no-export

– Propagate internally

– Used as uRPF opening for traffic engineering

Customer filtering logic

• Customer can announce aggregate.

• Customer can announce aggregate with

null-routed specifics.

• Customer can announce aggregate AND

null-route it, announce more-specifics to

forward.

– And can null-route further specifics.

Customer filtering sample

• 72.18.90.0/22 with 11457:0

– Aggregate is null-routed, but is announced to the world.

• 72.18.92.0/23

– More-specific is shared within AS, traffic is forwarded

to customer

• 72.18.93.0/24 with 11457:0

– More-specific is null-routed.

• Only 72.18.92.0/24 is forwarded to customer.

Impact of filtering

• We have at least two prefix lists per

customer:

– One exact-match list per allowed AS path

– One ‘le 32’ list for null routing and overrides

• We can optionally inject ‘tuning

communities’ in the customer inbound

route-map

BGP community design

• Tag every prefix with an internal
community at ingress.

– Identify POP of origin

– Identify requested egress handling

– Identify type of route (customer, ours, external)

• Use the tag intelligently:

– Use the POP of origin to adjust MED
• “Simple” geo-routing for customer prefixes saved us

significant WAN costs.

Our internal community design

• 11457:ABCDE

– A is route type (1=cust, 2=ours, 3=upstream,

etc.)

– BC is POP of origin

– D is desired tuning (0=as-tuned, 1=provider-

default, 2=backup, 7=maintenance)

– E is georouting (0=aggregate, hot potato,

1=POP-specific, cold potato)

Internal community, sample

• 11457:10200

– A=1, so it’s a customer route

– BC=02, so it came from POP#2 (Dallas)

– D=0, so we propagate based on default tuning

(possibly prepends and/or localpref tweaks)

– E=0, so we announce as hot-potato (equal

default MED in all cities)

Georouting

• Each provider port has a community list that

matches “nearby” POPs.

– If internal community matches 11457:….1 and

nearby POPs, MED=200.

– If internal community matches 11457:….1 but

not nearby POPs, MED=400.

– If internal community matches 11457:….0,

MED=200.

BGP community design

• Develop a set of communities that you or

your customers can apply to routes for

tuning within your network:

– Set local preference

– Null route

• Customers can create cust/cust-backup or

peer/peer-backup by using MED and LP.

Our customer community design

• 11457:localpref

– For limited versions of localpref (200, 300,

400)

• 11457:0

– For null routing

BGP tuning design

• Develop another set of communities that

you or your customers can apply to routes

for tuning outside your network:

– No-advertise

– Set prepends

– Request local preference

Announcement tuning logic

Filter out other upstream routes

Allow routes flagged with individual

or global LP/prepend requests -

complex to handle combos

Allow routes flagged with internal

LP requests and map a
corresponding LP

Process routes based on

embedded tuning (11457:ABCDE)

Set MED based on embedded

tuning

BGP outbound tuning

• We “enjoy” parallel connectivity to three

transit providers

– For each, one link in Dallas, one link in

Houston.

• Cold potato to transit providers’ space and

their customers

• Hot potato beyond their network

BGP outbound logic

• In normal state, cold potato is only one hop

longer than hot potato for us.

– We know our network

– They know their network

– But, we know our network better than we know

their network.

– If they’re telling us a particular POP is better,

we’ll use it.

BGP outbound logic

• Assumption is MED learned reflects IGP
distance to point of (aggregate) injection.

– For transit providers’ routes, point us towards
the point of aggregate origination.

– For transit provider’s customers, since MED
won’t traverse directly, assume provider has
chosen a best path (based either on customer
MED or hot/cold potato) and MED leads us
there.

Customer BGP experience

• We respect that many (all?) of our

customers have little to no BGP experience.

• As long as customer sends their aggregate

with a reasonable AS path and not too many

routes to bump against max-prefix, OK.

• We’ll apply reasonable tweaks at customer

request, but otherwise let them know they

have all the knobs they’ll need.

Traffic Engineering

• Redundancy is hard to plan

– Do you conduct regular simulations?

– Some networks aren’t conducive to efficient

redundancy.

• “Two means one, one means none”
– From the movie “GI Jane”

• 2/1 means half of your capacity is excess.

– Ugh.

MPLS Traffic Engineering

• MPLS TE saved our network

– Normal IGP/EGP routing is completely

unaware of traffic saturation, until enough

keepalives are lost.

– MPLS TE enables routers to spread traffic over

multiple paths, including those that are not the

shortest IGP path.

– Built using one-way tunnels between routers.

MPLS TE deployment

• Initial deployment:

– Full mesh of tunnels between dist and edge

routers, with 1-2 tunnels depending on traffic

loads.

– Aggressive (15-minute) auto-bandwidth timers

meant that the network was adjusting rapidly.

– Our backbone, versus the size of the major

flows, required this approach.

MPLS TE pitfalls

• NNTP: few large-bandwidth flows would

get glued to a tunnel.

– Add tunnels for granularity.

• Redundant capacity can easily get used by

accident – no easy tracking.

– However, excess capacity can get used during

momentary surprises!

MPLS TE long-term

• IOS issues eventually caught us

– End solution is entirely within the core layer,

and only across WAN links.

– Standard deployment of four tunnels per link.

– Roughly 25% of traffic swings at a time

– Traffic follows lowest-metric topology except

during congestion.

Monitoring

• Consider home-grown tools to research

many/all facets of a particular customer’s

port/service

– Consolidate relevant information for your help

desk

– Minimize the need to share ‘enable’

Monitoring

• Three problems to solve:

– What is up/down at this moment?

– What happened when?

– How many [bits, packets, errors, etc.] are

flowing?

• Usually different tools to solve each

problem.

Monitoring

• For us, the two biggest things were MRTG

with home-brew enhancements and syslog.

– Our MRTG has simple links per port for a

cutesy network diagram, telnet to CPE, and

how-to-configure a CPE

– Our syslog has a Perl wrapper that color-codes

up/down and substitutes in the interface

description so the entry has local meaning.

Sample diagram

Sample log watcher

Security

• Prevent bad traffic

– BCP38 (anti-spoofing)

– Use uRPF unless you can’t, please

– Allows a simple but effective inbound ACL

(less complexity in older GSR cards)

• Block it before it ever gets into your

network!

Security

• Black hole routing

– Cannibalize a 2511 as a black hole trigger

– Google “RTBH”

• Build at least the most basic NetFlow

infrastructure

– Learn how to find DDOS (think “sort by

packets in flow”) and black hole fast

Closing

• That’s my story, and I’m sticking to it.

– It’s worked very well for us. My phone rings

with a “stumper” every three months or so.

• Configuration snippets from any part of our

network are available by email request.

• Questions?

