Comcast DNSSEC Trial Test Bed

Chris Griffiths Principal Engineer – DNS and Network Management Product Engineering

Overview

- What is DNSSEC
- DNSSEC at Comcast
- Test Platforms
- Deployment Learnings
- Performance
- Related Initiatives at Comcast
- Looking Forward
- Resources

What is **DNSSEC**

- DNSSEC (Domain Name System Security Extensions) provides validation of data requested in DNS lookups. It verifies that the data received by a recursive server matches the data on the authoritative server and that the zone wasn't modified in transit.
- DNSSEC doesn't encrypt data. It only adds an authentication record that can be verified by a recursive server.
- DNSSEC is backwards compatible. A recursive server can ignore the signing information and return a normal response.

DNSSEC at Comcast

- 14.7 million broadband subscribers
- Protecting our subscriber facing recursive clusters is our highest DNS priority
- Current recursive infrastructure is not vulnerable but we cannot sit back and wait for the next big bug/exploit
- DNSSEC has been on our internal DNS roadmap
- Kaminsky Vulnerability increased our priority to test and deploy DNSSEC

Test Platforms deployed

- DNSSEC-capable resolvers have been deployed into our production Comcast High-Speed Internet network.
 - Nominum Vantio
 - ISC BIND
 - Unbound
- These resolvers are available for any IPv4 address to query.
- Trial info is available at http://www.dnssec.comcast.net.
- This is available for the DNS community at large to test against.
- Contact us if you'd like to obtain error logs or need other support.
- Contact us if you'd like us to add a key for testing a domain

Available for DNS Community Testing

- We have loaded the following ccTLD public keys in use worldwide:
 - .br
 - .bg
 - .pr
 - .se
 - .CZ
- A Comcast sub-domain has been signed: dnssec.comcast.net

Also loaded public keys for:

e164.arpa	212.in-addr.arpa	81.in-addr.arpa	5.1.1.0.0.2.ip6.arpa	c.4.1.0.0.2.ip6.arpa
ripe.net	194.in-addr.arpa	141.in-addr.arpa	6.0.1.0.0.2.ip6.arpa	d.4.1.0.0.2.ip6.arpa
ripencc.com	145.in-addr.arpa	91.in-addr.arpa	6.1.1.0.0.2.ip6.arpa	0.a.2.ip6.arpa
ripencc.net	217.in-addr.arpa	92.in-addr.arpa	7.0.1.0.0.2.ip6.arpa	4.2.0.0.1.6.0.1.0.0.2.ip6.arpa
ripencc.org	62.in-addr.arpa	93.in-addr.arpa	7.1.1.0.0.2.ip6.arpa	5.2.0.0.1.6.0.1.0.0.2.ip6.arpa
ripe-ncc.com	77.in-addr.arpa	94.in-addr.arpa	7.4.1.0.0.2.ip6.arpa	6.2.0.0.1.6.0.1.0.0.2.ip6.arpa
ripe-ncc.net	78.in-addr.arpa	95.in-addr.arpa	8.0.1.0.0.2.ip6.arpa	7.2.0.0.1.6.0.1.0.0.2.ip6.arpa
ripe-ncc.org	79.in-addr.arpa	188.in-addr.arpa	9.0.1.0.0.2.ip6.arpa	uk-dnssec.nic.uk
ripe.int	87.in-addr.arpa	151.in-addr.arpa	a.0.1.0.0.2.ip6.arpa	dlv.isc.org
89.in-addr.arpa	83.in-addr.arpa	82.in-addr.arpa	a.1.1.0.0.2.ip6.arpa	dnsops.gov
90.in-addr.arpa	84.in-addr.arpa	85.in-addr.arpa	a.4.1.0.0.2.ip6.arpa	dnsops.biz
213.in-addr.arpa	86.in-addr.arpa	0.4.1.0.0.2.ip6.arpa	b.0.1.0.0.2.ip6.arpa	
193.in-addr.arpa	88.in-addr.arpa	1.4.1.0.0.2.ip6.arpa	b.1.1.0.0.2.ip6.arpa	
195.in-addr.arpa	80.in-addr.arpa	4.1.1.0.0.2.ip6.arpa	b.4.1.0.0.2.ip6.arpa	

© 2009 Comcast

Comcast Confidential

Deployment Learnings

- Signing of internal zone
 - Currently a manual process
 - Seems complex generating ZSK's and KSK's
 - Additional complexity by having to rollover keys
 - RFC states 30 days for ZSK and 1 year for KSK
 - Keyset expiry issues
 - Use of over lapping keys for ZSK and KSK to avoid expiration
 - Not many DNSSEC tools available to manage signing of zones and maintenance of keys
 - Process of signing zones every time a change is made has to be automated for an enterprise deployment
 - Some form of zone management engine/platform with a scheduler would be optimal to avoid human error for zone and key signing processes
- What processes are available to publish signed zones to the world?
- Understanding processes of updating registries when well know TLDs are signed.

Deployment Learnings cont'd

- Loading known public keys of signed zones
 - Spent a lot of time finding keys for different signed domains
 - No one repository was available for providing a list of all trust anchors
 - Looking forward to IANA's global trust anchor repository
 - ISC DLV repository available
 - Look aside validation is specific to BIND and now supported by Unbound
 - Haven't published test domain KSK with ISC DLV yet

Performance

- Platforms tested with DNSSEC
 - Nominum Vantio
 - ISC BIND
 - Unbound
- Impact on authoritative infrastructure
 - Increased memory footprint
 - ~5-9 times
 - If you have large zones and/or a lot of zones need to seriously think about breaking up the zones
 - Ex: Comcast roughly manages 30 million A and PTRs for subscribers
 - Disk store, startup times
- Impact on recursive infrastructure
 - Being prepared to deploy additional DNS recursive clusters
 - Impact to cache-hit ratios (mem-cache configuration)
 - Size of configuration file if root zone is not signed
 - Management of trust anchors
 - Automating the update of trust anchors for all loaded public keys

Related Initiatives at Comcast

- Working with organizations such as CableLabs and National Cable and Telecommunications Association (NCTA) to create awareness amongst the MSO community
- Adding DNSSEC related test cases to device certification processes.
 - Test report DNSSEC impact on broadband routers and firewalls
 - http://download.nominet.org.uk/dnssec-cpe/DNSSEC-CPE-Report.pdf

Looking forward

- Sign Comcast.net top level domain
- Look to enable DNSSEC validation on recursive clusters
- Hopeful that root will be signed in the next 6-9 months
 - Reduces the complexity of searching for public keys
 - Reduces the number of third party trust anchor repositories
 - Will help with the deployment of DNSSEC
- Verisign must Sign ".COM" and ".NET" as early as possible (9-12 months)
- Large ISPs must start testing DNSSEC capable resolvers
- Large companies must look at signing their zones to put pressure on registrars and registries to support DNSSEC

Resources

- RFC 4033
- RFC 4034
- RFC 4035
- RFC 4641
- RFC 5011
- RFC 5155
- http://www.dnssec-tools.org/
- http://www.dnssec-deployment.org/
- http://www.dnssec.net/
- IETF: DNS Extensions Working Group
- IETF: DNS Operations Working Group

