

Ensuring Service Quality & Security in Converged Networks Through Proactive Monitoring

Rahul Vir Product Line Manager Foundry Networks rvir@foundrynet.com

Agenda

Monitoring of Video Networks Monitoring MPLS VPN Networks Monitoring Other Services Traffic Management Example Summary

Introduction

- Converged Networks offer residential triple-play and business services over a single infrastructure
- Diverse services require widely different service guarantees
 - Video: VoD, IPTV
 - Voice over IP
 - High Speed Internet Access (HSIA)
 - Layer 2 and Layer 3 VPNs
- Monitoring in converged networks offers many challenges
 - Multiple targeted solutions for each service not practical
 - Providers wary of destabilizing network
 - Need standards based tools to avoid vendor lock-in
- Proactive monitoring offers a single solution
 - Enables predicting, detecting and offers tools to isolate potential problems
 - Transparent to customer traffic with not overhead on management processor

Closed Loop Network Visibility Video Monitoring

- Need sFlow enabled routers for monitoring video feeds
- Passive optical tap when routers do not support sFlow
- Routers at the NOC for analysis
- Connectivity for sFlow routers can be in-band or out-of-band
- Standalone management software for closed-loop analysis
 - Verifies video flows in real-time

Closed Loop Network Visibility How it works

- Real-time collection and evaluation of sampled traffic
- Uses sFlow for a reverse feedback path between the location being monitored and the NOC
 - Sample rate can be as aggressive as 1 in 512
 - sFlow collector running on a server in the NOC
- Events below trigger the policy management system to request a full replica of the video stream :
 - Absence of sFlow packets for a certain duration OR
 - An operator initiated operation OR
 - A subscriber reported problem
- Policy Manager activates replication through ACL-based mirroring
- Router encapsulates the mirrored traffic into a point-to-point Virtual Leased Line to transport the video stream to the NOC
 - To minimize setup time, the VLL is established a priori from each remote router to the router in the NOC

Flowchart of Operations

sFlow Overhead In A Network

Just 0.02% overhead even at aggressive sampling rates!

sFlow overhead calculator

Note: Cells in yellow are configurable values; the rest of the cells are either fixed or derived from other cells

Network assumptions:		
Interface Rate (IR):	10	Gbps
Input Packet Size (IPS):	1362	bytes
Interface MTU (MTU):	1,518	bytes
Netw ork Traffic Rate (NTR):	917,768	pps

sFlow computations:		
sFlow datagram transport overhead (SDTO):	24	sFlow
	8	UDP
	20	IP
	14	MAC header
Total:	66	bytes
Interface Counters Sample (ICS):	108	bytes
Flow Sample Header Bytes (FSHB):	128	bytes
Samples Per Datagram (SPD):	11	
Interface Counters Polling Rate (ICPR):	1/30	
Packet Sampling Rate (PSR):	1/512	

Calculation per 10-GbE interface:			
Interface counter bits per second (ICBPS):	ICS * 8 * ICPR =	28.80	
Flow Samples Per Second (FSPS):	NTR * PSR =	1792.5	
Flow Datagram Bits Per Second (FSBPS):	(ICBPS + FSPS*FSHB*8 + SDTO*8) bps		
	1,836,092.78 bps		
Overhead of sFlow therefore is FSBPS / (IR * 10^9)			
0.02%	of interface rate		

Benefits of Solution for Video Monitoring

- Real-time network wide service visibility with no performance degradation
- Easily integrates to existing infrastructure
 - Sampling-based collection method provides very low overhead monitoring
 - Adapts to different traffic loads by tuning sFlow sample size
 - Can be used in conjunctions with IP-based diagnostic tools such as traceroute
- Reliable monitoring infrastructure
 - Out-of-band infrastructure ensures that the sFlow feedback and mirror traffic is not affected by outages in core infrastructure
 - MPLS Layer 2 VPN infrastructure ensures high resiliency
 - Multi-location monitoring using multiple sFlow collectors
 - Mirrored traffic and sFlow traffic may be sent to a different NOC center for trouble analysis

Monitoring MPLS VPNs

Monitoring MPLS-based VPN Services Real-Time Traffic Monitoring

- MPLS VPNs gaining popularity among business customers
- Tunnels make traffic analysis more difficult
- Aggregate statistics have limited utility
- Sey Requirements for Monitoring L2 and L3 VPNs:
 - Monitor network performance, availability and security
 - Trending and traffic analysis per VPN endpoint
 - Comprehensive VPN information for troubleshooting and planning
 - Top Talker, traffic trends, threat detection desirable on per VC basis

Monitoring MPLS-based VPN Services

- sFlow capable routers at Provider Edge
- Enable sFlow on VPN endpoints
- SFlow collectors can be placed at NOC to monitor PE routers
- Perform analysis and trending per VC instance
- Standards based: Standalone sFlow collection and monitoring tools available for MPLS traffic analysis

Monitoring MPLS-based VPN Services How it works

- MPLS/VPN information added in sFlow version 5 http://www.sflow.org/sflow_version_5.txt
- Provider Edge (PE) routers provide sFlow samples
- At endpoint interface, incoming packets are sampled and additional information is collected and exported in the sFlow packets:
 - MPLS VC information: VC name, VC-ID, and VC label COS
 - MPLS tunnel information: LSP tunnel name, tunnel index as assigned by the router, and tunnel COS
- Abnormal traffic patterns and excess traffic usage can be detected
- Examples:
 - Traffic Trends per VC-ID
 - Top Talkers by VC-ID and/or MAC address
 - Traffic Totals based on multiple parameters

Endpoint statistics per VC ID

23 Jan, 10:21 - 23 Jan, 11:21 4.5 M 4.2 M 4.0 M · 3.8 M · 3.5 M · 3.2 M · 3.0 M · per Second 2.8 M 2.5 M · 2.2 M 2.0 M Bits 1.8 M 1.5 M · 1.2 M · 1.0 M · 750.0 K 500.0 K 250.0 K 0.0 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20 10:20 Time to_R1_R4 to_R1_R4_422 Courtesy: InMon Corporation VPLS-421 VPLS-422

Traffic Trend per VC ID

MPLS VC	Bits per Second
VPLS-421	1.086 M
VPLS-422	535.958 K

Recent Top N Chart Top contributors by VC ID Courtesy: InMon Corporation

Traffic Composition Analysis Analysis of Traffic Inside VC

Recent Traffic : Table showing per VC traffic totals.

MPLS VC	MPLS VC ID	MPLS VC COS	Ethernet Protocol	Bytes
VPLS-421	421	0	ETHERNET:0xFFFF	10.813 M
VPLS-422	422	0	ETHERNET:0x0800	8.684 M

Courtesy: InMon Corporation

Recent Traffic : Table showing traffic totals for VC, Protocol and MAC src/dst

MPLS VC	MPLS VC ID	MPLS VC COS	Traffic Type	MAC Source	MAC Destination	Bytes
VPLS-421	421	0	ETHERNET:0xFFFF	02020000002	04040000000	1.966 M
VPLS-421	421	0	ETHERNET:0xFFFF	020200000000	04040000003	1.966 M
VPLS-422	422	0	ETHERNET:0x0800	020202000003	040404000004	1.954 M
VPLS-421	421	0	ETHERNET:0xFFFF	02020000003	04040000002	1.720 M
VPLS-422	422	0	ETHERNET:0x0800	020202000003	040404000003	1.520 M
						141.844 M

Recent Traffic Totals Determining Accuracy Bounds

Traffic load can be calculated including +-(%*Error range*)

Historical Traffic Accuracy: Table showing accuracy in long term traffic totals.

MPLS VC	MPLS VC ID	Bytes	Lower Bound	Upper Bound	% Error
VPLS-421	421	168.307 M	158.012 M	178.602 M	6.117
VPLS-422	422	47.226 M	43.967 M	50.484 M	6.900

Courtesy: InMon Corporation

- Packet sampling performed in hardware to avoid performance degradation
- Infrequent packet sampling reduces overhead but reduces accuracy
- Increasing sampling accuracy possible by
 - Increasing sampling rate
 - Increasing sample gathering time
- Additional details available <u>here</u>.

Benefits of Solution for MPLS Monitoring

- Easily deployed with low overhead on PE routers
- Real-time monitoring of critical business services provides quick anomaly detection
- Helps maintain strict SLAs associated with Platinum customers
- Top Talkers can be
 - Rate Limited
 - Offered higher bandwidth/price services
- Comprehensive visibility and flexible reporting

Monitoring for Other Services (1)

Voice, HSIA, Mission-critical Data

- Service-specific traffic can be monitored using IPv4 ToS or IPv6 priority fields
 - High-priority Voice
 - Mission-critical Data
 - Best Effort Internet Access
- Traffic patterns can be studied on per service class basis
- * Voice traffic and quality analysis
 - Monitor RTCP traffic for macroscopic quality metrics
 - Provides quality of service trends in voice traffic
 - Can filter RTP traffic volume by codec and source/destination IP

Foundry Networks - All rights reserved.

Monitoring for Other Services (2)

Voice, HSIA, Mission-critical Data

- # High-Speed Internet Access (HSIA)
 - Traffic load trending useful for capacity planning
 - Identifying popular content like Google, Yahoo, YouTube, Xbox live
 - Provides opportunities for network optimization i.e. reduce transit costs, reduce latency, manage traffic congestion
 - Optimize Peering by tracking traffic based on ASPATH
 - Identify options to reduce transit costs like direct peering relationship
- Analysis tools can be used to study patterns and obtain statistics based on traffic type
 - Offline analysis with no performance impact to customer traffic

Foundry Networks - All rights reserved.

Monitoring for Enhancing Security ACL-Based Inbound sFlow

TCP/UDP ports can be monitored for threats

- Reconnaissance
- DOS attacks
- Network misuse
- Provides ability to monitor multiple services (IPv4- or IPv6-based) as well as multiple ports at once

```
//TCP SYN packets
access-list 151 permit tcp host 10.10.10.1 any established syn copy-sflow
// Apply inbound ACL to interface
NetIron(config)# interface ethernet 1/1
NetIron(config-if-e10000-1/1)# ip access-group 151 in
```

- Traffic is marked to separate from regular 1-to-N samples
- Lower overhead than mirroring
 - Smaller packet header capture
 - Monitors only selected traffic

Benefits of Monitoring for Services and Threats

- Provides threat detection for known threats
 - Perform offline analysis of captured packets
 - Compare packets with signatures of known threats
 - Example: NACHI/Welchia Worm

```
alert icmp $EXTERNAL_NET any -> $HOME_NET any \
(\
msg: "NACHI/Welchia";\
content: "|aaaa aaaa aaaa aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
aaaa |";\
dsize:64;\
itype: 8;\
icode: 0;\
classtype:trojan-activity;\
sid: 580005001;\
rev: 1;\
)
```

Security Warnings Matching Rule for NACHI/Welchia Worm

Time	Туре	Value	Address
6/21/08 10:18 PM	Security	580005001	116.121.53.173
6/21/08 6:10 AM	Security	580005001	208.127.11.41

- Provides threat detection for new threats
 - Ability to identify new threats by profiling behavior of hosts
 - Example: Scanning behavior could indicate a new worm
- Identify policy violations and network misuse

```
alert tcp 10.0.0.0/8 any -> any 80 \
(\
msg: "Test Rule";\
threshold: type limit, track by_src, count 1,
seconds 60;\
classtype:bad-unknown;\
sid:70000001;\
)
```

- Recovery after threat or anomaly detection
 - Apply rate limiting or drop policies for detected threats (ACL-based policies)
 - BGP blackhole routing

Security Warnings Matching Rule for Potentially Bad Traffic

Time	Туре	Value	Address
6/23/08 5:09 PM	Security	70000001	10.1.5.103
6/23/08 5:05 PM	Security	70000001	10.1.5.103

Traffic Management Example

Problem

- Small percentage of users consume majority of network resources
- Rapid growth in Video and peer-to-peer traffic is outpacing network capacity growth
- Effective traffic management is essential to protect critical services and applications, and to control network costs.

Traffic Shaping using sFlow

Foundry Networks - All rights reserved.

generates traffic

Automated control

Traffic Sentinel - Mozilla Firefox	
<u>E</u> ile <u>E</u> dit ⊻iew History <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	*** ***
Traffic Sentinel	Vvelcome, pp [Loqout]
File Home Events Traffic Signatures Reports Maps Controller Search	Help
Settings Rules <u>Controls</u>	
Filter: Sort ID V Back Configuration Commands (Switch: fgs)	
ip access-list extended inmsf469 permit ip host 10.0.0.90 any dscp-marking 10 permit ip any any exit interface ethernet0/1/24 ip access-group inmsf469 in	<u>~</u>
exit	~
	>
Copyright © 1999-2008 InMon Corp	. ALL RIGHTS RESERVED

sFlow Traffic Shaping in Action

Figure:

- University network
 - ~ 20,000 switch ports
- 10-20 control changes (add or remove) per hour
- ~50% of traffic is marked by the controller (using DSCP)

Advantages

- Scalable: Distributed measurement, coloring and control tasks
- Low cost: embedded measurement, traffic classification and priority queuing mechanisms are utilized
- High performance: mechanisms are built into switch ASICs and operate at wire speed

- Real-time monitoring using sFlow offers compelling monitoring solutions for converged networks
- Offers a low overhead approach for network control and to sell premium services
- Per customer traffic analysis possible using MPLS VPN endpoint information
- Enables targeted monitoring for low impact offline analysis
- Provide an effective anomaly detection and recovery mechanism

