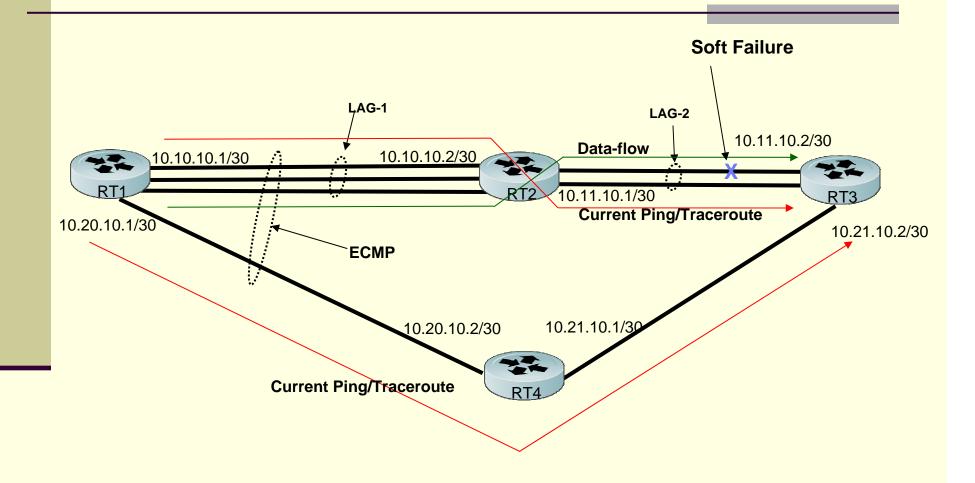
TraceFlow

Arun Viswanathan Subi Krishnamurthy Vishal Zinjuvadia Rajeev Manur

--Force10 Networks

Agenda...

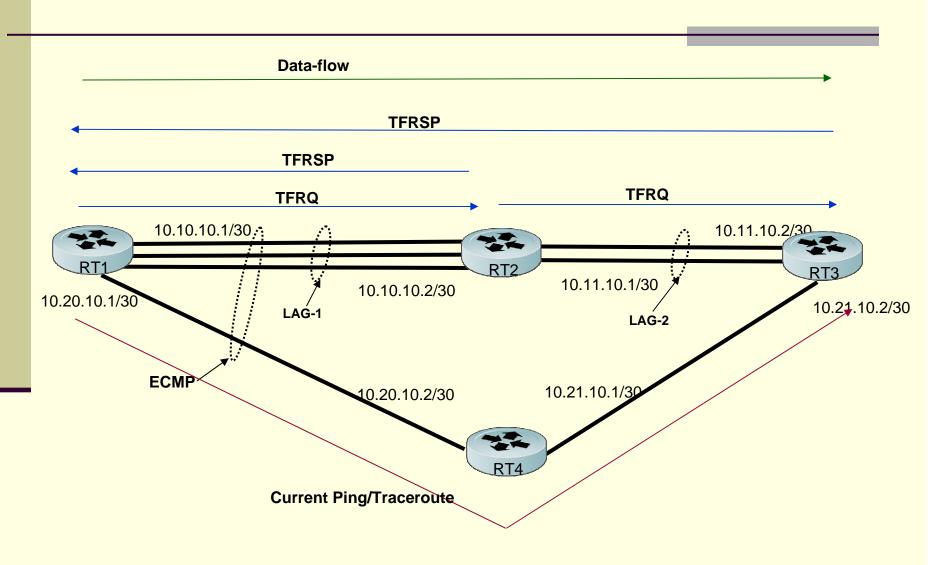
- Motivation
- Problem Statement
- Use-case scenario
- TraceFlow Protocol Operation
- Legacy (non-compliant devices) support
- Encapsulation
- Open Issues
- Q & A

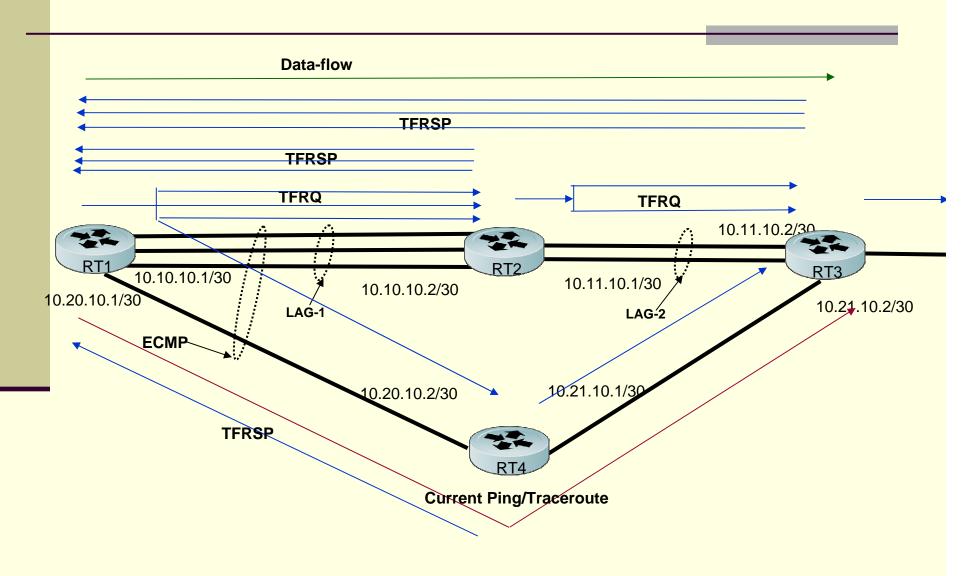

Motivation...

- Today's networks have evolved into more complex heterogeneous entities
 - LAG & ECMP are commonly used for redundancy and loadbalancing
 - E2E paths are typically an intermix of L2/L3/MPLS hops
- OAM tools have not kept pace with the OAM requirements of evolving networks.
 - Destination address based Ping/Traceroute do not provide extra level of information needed in networks that use LAG/ECMP/flow based forwarding function like ACLs, Policy Based Routing
 - Need a mechanism to collect specific data along the flow path to help diagnose the network problems better.
- Many of our customers (SPs, Datacenters) would like to have a solution to this problem.

Problem Statement...

- Need to extend ping/traceroute to have,
 - Ability to trace 3/5 tuple user defined flow to exercise the same ECMP path or component link in a LAG as that taken by corresponding data packets. (An example on the following slide)
 - Ability to selectively collect relevant diagnostic data along the flow path.
- Increased security built into the protocol for tracing intra-area and inter-area E2E paths
- Extend this ping/trace functionality to L2/MPLS hops along the way


Use-case scenario...


TraceFlow Protocol

- It is a protocol to address the requirements we have discussed so far
 - Design is extendable to future needs
- We have presented this in the OPSAWG Working Group at IETF
 - Internet Draft URL: http://tools.ietf.org/html/draft-zinjuvadia-traceflow-00 (work in progress)

Protocol Operation -- 1

Protocol Operation (Fan-out) – 2

Protocol Operation (Messages) -- 3

- Request Message Composed of the following Type-Length-Value tuples
 - Flow Descriptor (first 256 bytes of flow packet)
 - Flow Information (MTU, fragmentation, etc.)
 - Originator address
 - Termination
 - Requested information
 - Authentication
- Response Message Composed of the following Type-Length-Value tuples
 - Flow Descriptor (first 256 bytes of flow packet)
 - Encapsulated Packet Mask
 - Record-Route
 - Interface Info TLV(incoming/outgoing)
 - Result TLV

Legacy (non-compliant devices) support...

- Non-compliant nodes likely to forward TraceFlow messages along a different path compared to data packets for the same traffic flow
- Potential solution
 - Use Probe packets that look like data packets with TTL Scoping (like traceroute) to determine the path and the boundary of the legacy segment
 - Then use regular TraceFlow & hop over the legacy segment along the direction of the actual traffic flow
- Issues
 - Probe packets are indistinguishable from data
 - We run the risk of leaking spoofed probe packets into end-node receiver applications
 - Protocol complexity increases

Encapsulation...

- We are currently proposing UDP
 - Hop-by-Hop termination may be an issue
- Other options
 - New IP Protocol?
 - New ICMP message types?
 - Not sure if all hardware can look into ICMP subtypes for re-directing the packet to the CPU?

Open Issues...

- Encapsulation
- Legacy support Do we need it?

Questions/Feedback?

Thank You