Network Performance Tools

Jeff Boote Internet2/R&D

June 1, 2008 NANOG 43/ Brooklyn, NY

Overview

- BWCTL
- OWAMP
- NDT/NPAD

BWCTL: What is it?

A resource allocation and scheduling daemon for arbitration of iperf tests

Problem Statement

•Users want to verify available bandwidth from their site to another.

Methodology

 Verify available bandwidth from each endpoint to points in the middle to determine problem area.

Typical Solution

•Run "iperf" or similar tool on two endpoints and hosts on intermediate paths

Typical road blocks

- Need software on all test systems
- Need permissions on all systems involved (usually full shell accounts*)
- Need to coordinate testing with others *
- Need to run software on both sides with specified test parameters *
- (* BWCTL was designed to help with these)

Implementation

Applications

- bwctld daemon
- bwctl client

Open source license and development Built upon protocol abstraction library

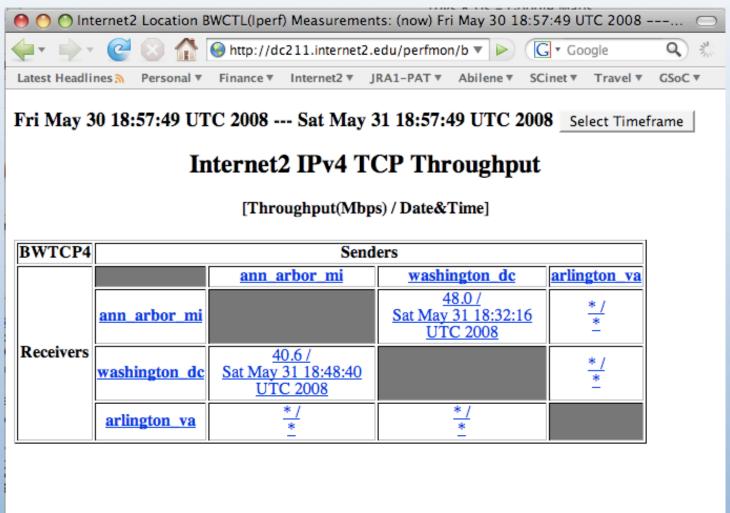
- Supports one-off applications
- Allows authentication/policy hooks to be incorporated

Functionality (bwctl)

bwctl client application makes requests to both endpoints of a test

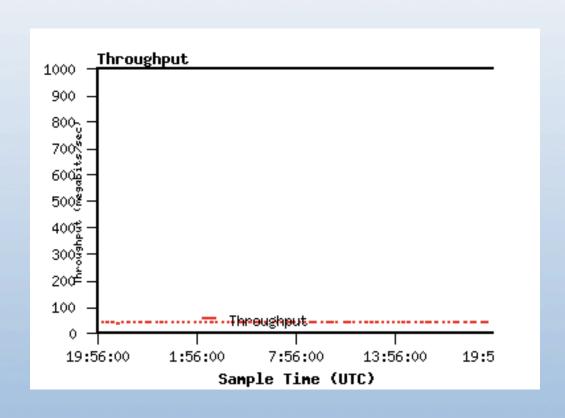
- Communication can be "open", "authenticated", or "encrypted" (encrypted reserved for future use)
- Requests include a request for a time slot as well as a full parameterization of the test
- Third party requests
- If no server is available on the localhost, client handles test endpoint
- *Mostly* the same command line options as iperf (some options limited or not implemented.)

Functionality (bwctld)


bwctld on each test host

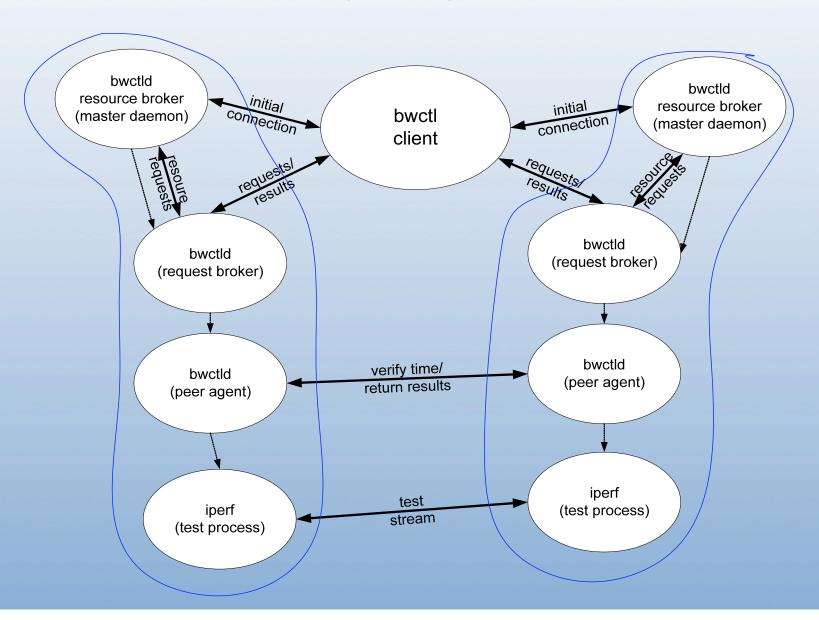
- Accepts requests for "iperf" tests including time slot and parameters for test
- Responds with a tentative reservation or a denied message
- Reservations by a client must be confirmed with a "start session" message
- Resource "Broker"
- Runs tests
- Both "sides" of test get results

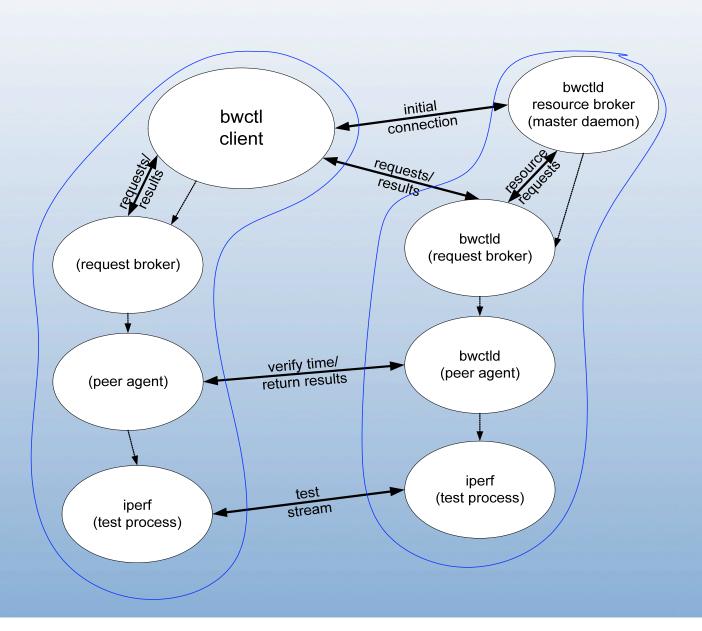
BWCTL Example


```
[boote@nms-rthr2 ~]$ bwctl -x -s bwctl.kans.net.internet2.edu
bwctl: 19 seconds until test results available
RECEIVER START
3421251446.646488: iperf -B 2001:468:9:100::16:22 -P 1 -s -f b -m -p 5
001 -t 10 -V
Server listening on TCP port 5001
Binding to local address 2001:468:9:100::16:22
TCP window size: 87380 Byte (default)
[ 14] local 2001:468:9:100::16:22 port 5001 connected with 2001:468:4:
100::16:214 port 5001
[ 14] 0.0-10.2 sec 1193058304 Bytes 939913512 bits/sec
[ 14] MSS size 8928 bytes (MTU 8968 bytes, unknown interface)
RECEIVER END
SENDER START
3421251448.787198: iperf -c 2001:468:9:100::16:22 -B 2001:468:4:100::1
6:214 -f b -m -p 5001 -t 10 -V
Client connecting to 2001:468:9:100::16:22, TCP port 5001
Binding to local address 2001:468:4:100::16:214
TCP window size: 87380 Byte (default)
[ 7] local 2001:468:4:100::16:214 port 5001 connected with 2001:468:9
:100::16:22 port 5001
 7] 0.0-10.0 sec 1193058304 Bytes 951107779 bits/sec
[ 7] MSS size 8928 bytes (MTU 8968 bytes, unknown interface)
SENDER END
[boote@nms-rthr2 ~]$
```

BWCTL Data (Dash-Board)

Done


BWCTL Data – Path History


Resource Allocation (bwctld)

- Each connection is "classified" (authentication)
- Each classification is hierarchical and has an associated set of hierarchical limits:
 - Connection policy (allow_open_mode)
 - Bandwidth (allow_tcp,allow_udp,bandwidth)
 - Scheduling (duration, event_horizon, pending)
 - A time slot is simply a time-dependent resource that needs to be allocated just like any other resource. It therefore follows the resource allocation model.

BWCTL: 3-party Interaction

BWCTL: No Local Server

Tester Applications

- Iperf is primary "tester"
 - -Well known widely used
- Problems integrating exec'd tool
 - Server initialization (port number allocation)
 - error conditions
 - No indication of partial progress (How full was the send buffer when the session was killed?)
- thrulay/nuttcp are available in latest 'RC' version of bwctl

General Requirements

- •lperf version 2.0 and 2.0.2
- •NTP (ntpd) synchronized clock on the local system
 - Used for scheduling
 - More important that errors are accurate than the clock itself
- •Firewalls:
 - Lots of ports for communication and testing
- •End hosts must be tuned!

http://www.psc.edu/networking/perf tune.html
http://www-didc.lbl.gov/TCP-tuning/buffers.html

Supported Systems

- •FreeBSD 4.x, 5.x
- •Linux 2.4, 2.6
- (Most recent versions of UNIX should work)

Policy/Security Considerations

DoS source

 Imagine a large number of compromised BWCTLD servers being used to direct traffic

DoS target

 Someone might attempt to affect statistics web pages to see how much impact they can have

Resource consumption

- Time slots
- Network bandwidth

Policy Recommendations

- Restrictive for UDP
- More liberal for TCP tests
- More liberal still for "peers"
- •Protect AES keys!

Availability

Currently available

http://e2epi.internet2.edu/bwctl/

Mail lists:

- •bwctl-users@internet2.edu
- •bwctl-announce@internet2.edu

https://mail.internet2.edu/wws/lists/engineering

OWAMP: What is it?

OWD or One-Way PING

- A control protocol
- A test protocol
- A sample implementation of both

Why the OWAMP protocol?

- Find problems in the network
 - Congestion usually happens in one direction first...
 - Routing (asymmetric, or just changes)
 - SNMP polling intervals mask high queue levels that active probes can show
- •There have been many implementations to do One-Way delay over the years (Surveyor, Ripe...)
 - The problem has been interoperability.
 - http://www.ietf.org/rfc/rfc4656.txt

OWAMP Control protocol

- Supports authentication and authorization
- Used to configure tests
 - Endpoint controlled port numbers
 - Extremely configurable send schedule
 - Configurable packet sizes
- Used to start/stop tests
- Used to retrieve results
 - Provisions for dealing with partial session results

OWAMP Test protocol

Packets can be "open", "authenticated", or "encrypted"

Sample Implementation

Applications

- owampd daemon
- owping client

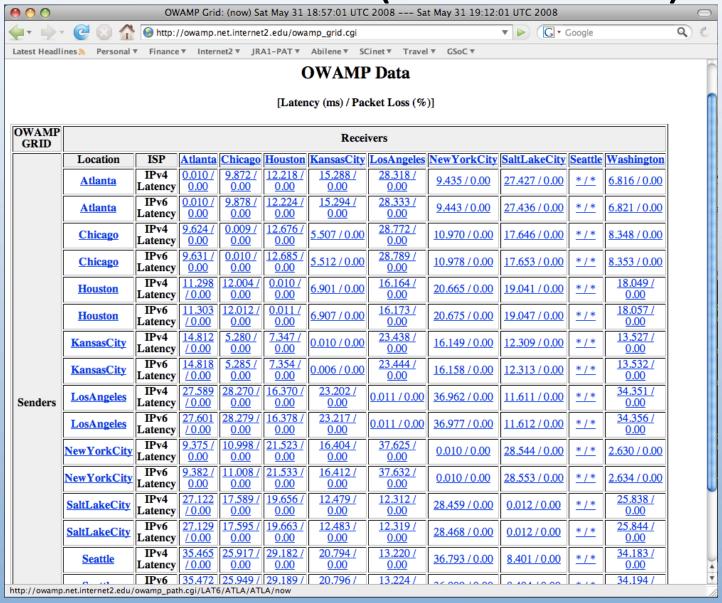
Open source license and development Built upon protocol abstraction library

- Supports one-off applications
- Allows authentication/policy hooks to be incorporated

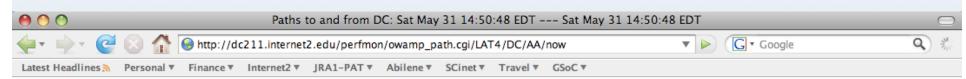
Functionality (owping client)

- owping client requests OWD tests from an OWAMP server
- Client can be sender or receiver
- Communication can be "open", "authenticated", or "encrypted"
- Supports the setup of many tests concurrently
- Supports the buffering of results on the server for later retrieval

Functionality (owampd)

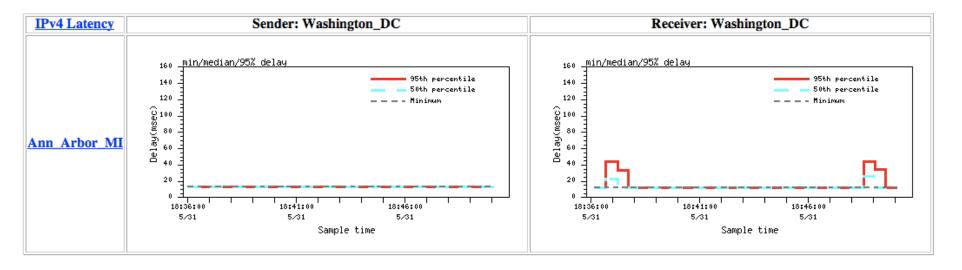

owampd

- Accepts requests for OWD tests
- Responds with accepted/denied
- Tests are formally started with a StartSessions message from the client.
- Runs tests
- Sessions with packets received at the server are buffered for later retrieval


OWPING Example

```
boote@nms-rlat.chic.net.internet2.edu: /home/boote
boote@nms-rlat:~[360]$ owping nms-rlat.newy.net.internet2.edu
Approximately 13.0 seconds until results available
--- owping statistics from [64.57.17.34]:45355 to [nms-rlat.newy.net.internet2.e
dul:44244 ---
SID:
       40391162cbec228e81118c1953a5eef9
first: 2008-05-31T19:16:31.627
last: 2008-05-31T19:16:43.362
100 sent, 0 lost (0.000%), 0 duplicates
one-way delay min/median/max = 11/11/11 ms, (err=0.0442 ms)
one-way jitter = 0 \text{ ms} (P95-P50)
Hops = 3 (consistently)
no reordering
--- owping statistics from [nms-rlat.newy.net.internet2.edu]:44247 to [64.57.17.
34]:45356 ---
SID:
       40391122cbec228ebb1bde827906fe35
first: 2008-05-31T19:16:31.608
last: 2008-05-31T19:16:41.979
100 sent, 0 lost (0.000%), 0 duplicates
one-way delay min/median/max = 10.9/11/11 ms, (err=0.0442 ms)
one-way jitter = 0 \text{ ms} (P95-P50)
Hops = 3 (consistently)
no reordering
boote@nms-rlat:~[361]$
```

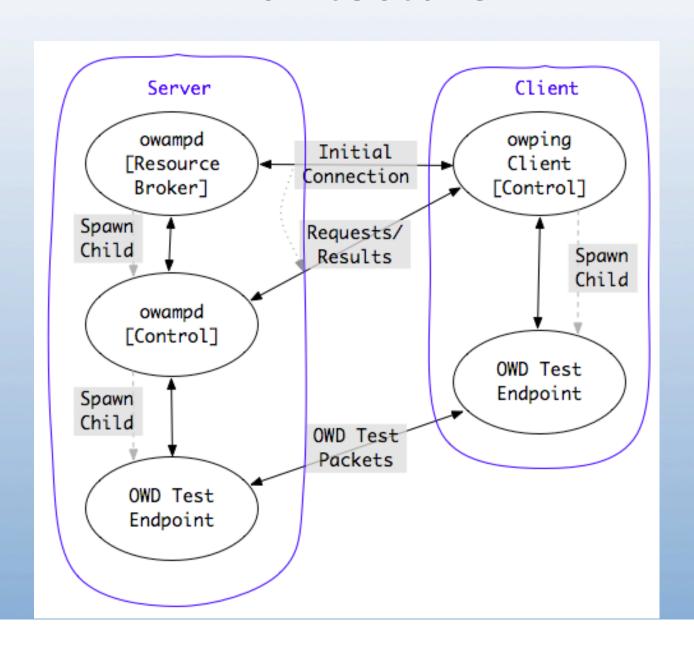
OWAMP Data (Dash-Board)



OWAMP Data (Path)

OWAMP (network latency)

Paths to and from Washington_DC: Sat May 31 14:50:48 EDT --- Sat May 31 14:50:48 EDT



Resource Allocation

- Each connection is "classified" (authentication)
- •Each classification is associated with a set of hierarchical limits
 - Bandwidth (bandwidth)
 - Session buffer (disk)
 - Data retention (delete_on_fetch)
 - Connection policy (allow open mode)

(no time dependent dimension to resource allocation in owampd)

Architecture

General Requirements

- NTP (ntpd) synchronized clock on the local system
 - Specific configuration requirements as specified in NTP talk...
 - Strictly speaking, owamp will work without ntp.
 However, your results will be meaningless in many cases
- gnumake for build process

Supported Systems

- •FreeBSD 4.7+, 5.x, 6.0 (64-bit)
- •Linux 2.4, 2.6 (64-bit)
- MacOS X 10.4.X
- •Solaris 10.4.5
- (Most recent versions of UNIX should work)

Recommended Hardware

- Stable System Clock
 - Temperature controlled environment
 - No power management of CPU
- •No strict requirements for CPU, Memory, Bus speed
 - More tasking schedules will require more capable hardware

Operational concerns

Time:

- NTP issues predominate the problems
- Determining an accurate timestamp "error" is in many ways more difficult than getting a "very good" timestamp
- Working as an "open" server requires UTC time source (For predefined test peers, other options available)

Firewalls:

- Port filter trade-off
 - Administrators like pre-defined port numbers
 - Vendor manufactures would probably like to "prioritize" test traffic
 - Owampd allows a range of ports to be specified for the receiver

Policy/Security Considerations

- Third-Party DoS source
- DoS target
- Resource consumption
 - Memory (primary and secondary)
 - Network bandwidth

Policy Recommendations

- •Restrict overall bandwidth to something relatively small
 - Most OWAMP sessions do not require much
- •Limit "open" tests to ensure they do not interfere with precision of other tests

Availability

Currently available

http://e2epi.internet2.edu/owamp/

Mail lists:

- •owamp-users@internet2.edu
- owamp-announce@internet2.edu

https://mail.internet2.edu/wws/lists/engineering

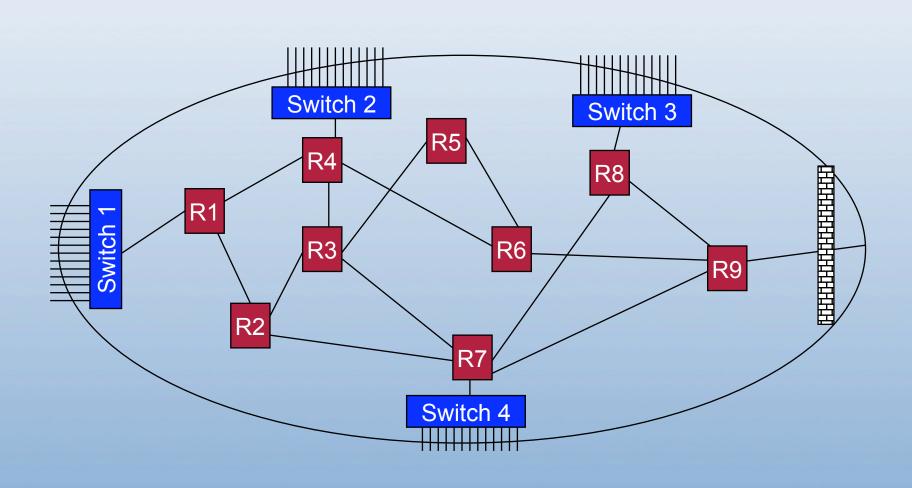
Advanced user tools

NDT

 Allows users to test network path for a limited number of common problems

NPAD

 Allows users to test local network infrastructure while simulating a long path


Underlying User Assumption

• When problems exist, it's the networks fault!

Simple Network Picture

Network Infrastructure

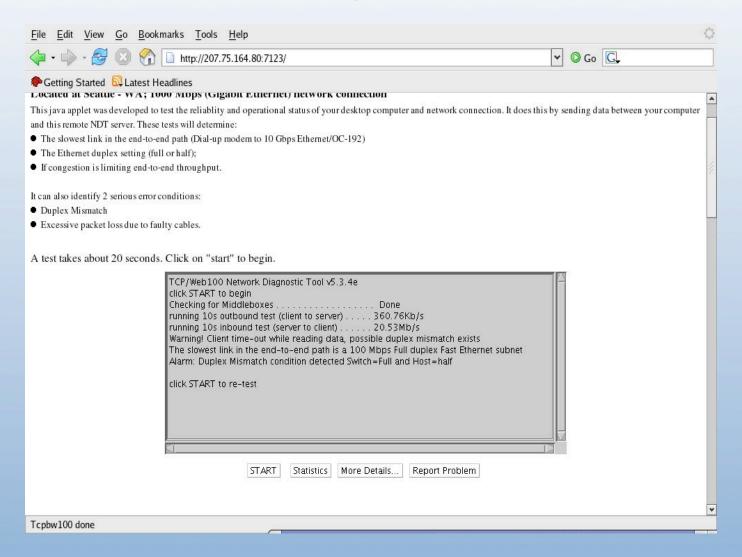
NDT: What is it?

Web browser invoked advanced user based diagnostics

- Allows users to test a network path for a limited number of common problems – from their desktop
- NDT allows user to give the network administrator a detailed view of exactly what the users host is doing
- Allows the user to be an active participant in the debugging process – allows them to more directly see how host configuration effects performance

Attempts to answer the questions:

What performance should a user expect? What is the limiting factor?

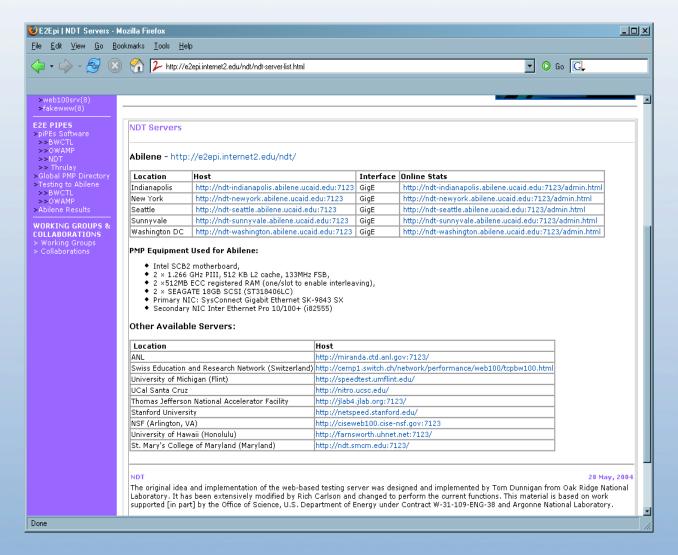

NDT Goals

- Identify real problems for real users
 - Network infrastructure is the problem
 - Host tuning issues are the problem
- Make tool simple to use and understand
- Make tool useful for users and network administrators

NDT user interface

- Web-based JAVA applet allows testing from any browser
- Command-line client allows testing from remote login shell

NDT sample Results

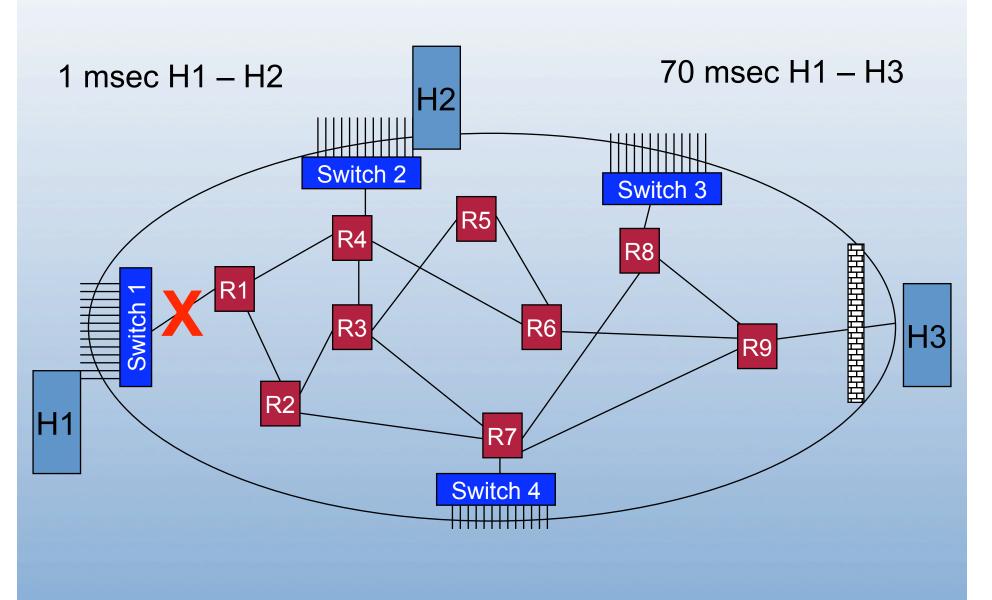

Finding Results of Interest

- Duplex Mismatch
 - This is a serious error and <u>nothing</u> will work right.
 Reported on *main* page, on *Statistics* page, and **mismatch:** on *More Details* page
- Packet Arrival Order
 - Inferred value based on TCP operation. Reported on *Statistics* page, (with loss statistics) and **order:** value on *More Details* page

Finding Results of Interest

- Packet Loss Rates
 - Calculated value based on TCP operation.
 Reported on *Statistics* page, (with out-of-order statistics) and **loss:** value on *More Details* page
- Path Bottleneck Capacity
 - Measured value based on TCP operation.
 Reported on main page

Finding NDT Servers

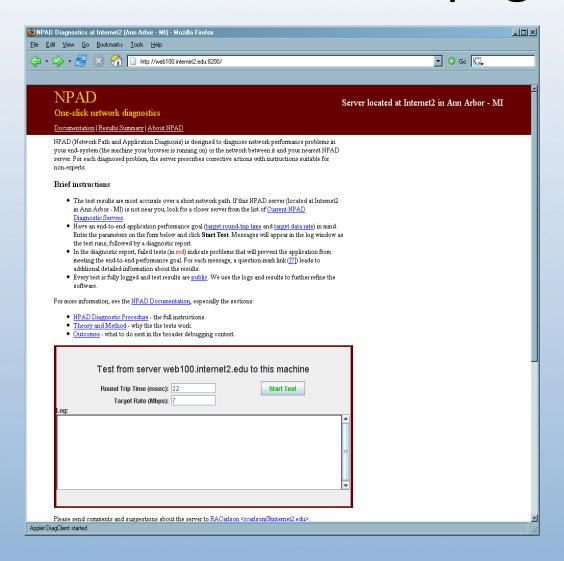

NPAD/pathdiag: What is it?

- Web browser invoked advanced user based diagnostics
 - Allows users to test a limited portion of the network path looking for problems that would adversely effect longer paths
 - Attempts to answer the questions:
- What performance should a user expect?
- What is the limiting factor?

NPAD/pathdiag

- A new tool from researchers at Pittsburgh Supercomputer Center
- Finds problems that affect long network paths
- Uses Web100-enhanced Linux based server
- Web based Java client

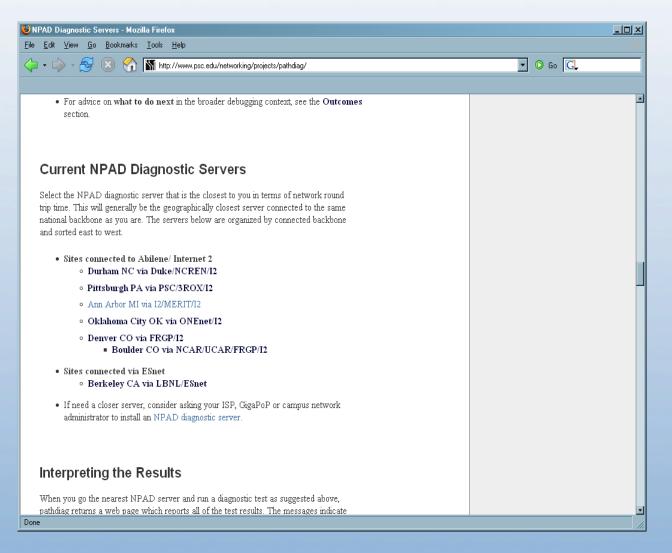
Long Path Problem


Long Path Problem

- E2E application performance is dependant on distance between hosts
- Full size frame time at 100 Mbps
 - Frame = 1500 Bytes
 - Time = 0.12 msec
 - In flight for 1 msec RTT = 8 packets
 - In flight for 70 msec RTT = 583 packets

TCP Congestion Avoidance

- Cut number of packets by ½
- Increase by 1 per RTT
 - LAN (RTT=1msec)
 - In flight changes to 4 packets
 - Time to increase back to 8 is 4msec
 - WAN (RTT = 70 msec)
 - In flight changes to 292 packets
 - Time to increase back to 583 is 20.4 seconds


NPAD Server main page

NPAD Sample results

⑤ Test Results - Mozilla Firefox
Elle Edit View Go Bookmarks Iools Help
Test conditions
Tester: (none) (207.75.164.80) [?] Target: (none) (24.15.178.61) [?]
Logfile base name: c-24-15-178-61.hsd1.il.comcast.net:2007-01-18-23:15:48 [7]
This report is based on a 7 Mb/s target application data rate [?] This report is based on a 22 ms Round-Trip-Time (RTT) to the target application [?]
The Round Trip Time for this path section is 21.048524 ms.
The Maximum Segment Size for this path section is 1460 Bytes. [?]
Target host TCP configuration test: Warning! [?]
Warning: TCP connection is not using RFC1323 timestamps. [7] Diagnosis: The target (client) is not properly configured. [7]
Warnings reflect problems that might not affect target end-to-end performance. [?]
> See TCP tuning instructions at http://www.psc.edu/networking/projects/tcptune/ [2]
Path measurements [?]
Data rate test: Pass! [?]
Pass data rate check: maximum data rate was 8.969226 Mb/s [?]
Loss rate test: Pass! [?]
Pass: measured loss rate 0.035214% (2839 packets between loss events). [?] FYI: To get 7 Mb/s with a 1460 byte MSS on a 22 ms path the total end-to-end loss budget is 0.282486% (354 packets between losses). [?]
Suggestions for alternate tests
FYI: This path may even pass with a more strenuous application: [?]
Try rate=7 Mb/s, rtt=62 ms Try rate=8 Mb/s, rtt=48 ms
Or if you can raise the MTU: [7]
Try rate=7 Mb/s, rtt=383 ms, mtu=9000 bytes Try rate=8 Mb/s, rtt=299 ms, mtu=9000 bytes
Network buffering test: Pass! [?]
Pass: The network bottleneck has sufficient buffering (queue space) in routers and switches. [?]
Measured queue size, Pkts: 36 Bytes: 52560 [7] This corresponds to a 48.333600 ms drain time. [7]
To get 7 Mb/s with on a 22 ms path, you need 19250 bytes of buffer space. [?]
The network path passed all tests! [?]
Tester validation: Pass! [?]
Done //

Finding NPAD servers

Try these tools

Network Performance Toolkit

http://e2epi.internet2.edu/network-performance-toolkit.html

Knoppix disk (OS on a CD) that has:

Iperf, thrulay, bwctl, owamp, NDT, NPAD, reverse-traceroute/ping...

Questions?

www.internet2.edu

