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Virtual Aggregation

An approach to shrinking FIBs (and RIBS)
o In routers, not in route reflectors

Works with legacy routers
o New configuration only

ISPs can independently and autonomously
deploy
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Outline

Project status and immediate goals
Mechanics

Evaluation results
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Status

Tested a couple of versions of VA by configuring on
Linux and Cisco routers

o Simple, static, small-scale experiments (~10 routers)
o Cisco 7301 and Cisco 12000

Modeled using data from a large ISP
o (router topology and traffic matrix)

Have not tested on a live network
Have not tested dynamics
Have not tested at large scale

Cornell owns some IPR....
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Goal of this talk

There are a number of variants of Virtual
Aggregation

I’m looking for a few router management
experts to help design the best variant

o MPLS, route reflectors, Ethernet, filters,
aggregation, .....
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Virtual Aggregation: Basic Idea
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= Goal is to partition the DFZ table among
existing FIBs
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Virtual Aggregation: Basic Idea

= Divide IP address space into “virtual prefixes” (say
[7’S)
= Operate each virtual prefix as a “VPN”

= Assign different routers to different “VPNS”
o Or even different physical FIBs within a router
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Virtual Aggregation: Basic Idea

= Each router then knows:
o Routes to all sub-prefixes within its virtual network
o Routes to all other virtual networks
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Virtual Aggregation: Basic Idea
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Virtual Aggregation: Basic Idea
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= Path length can increase

o Not so bad if each virtual prefix has a member router in
each POP

= Load can increase
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Virtual Aggregation: Basic Idea

Packet to a site with )
address in “green”
virtual prefix

= Path length increase

= Can be significant if a POP does not have a
member router for a given virtual prefix
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‘ Border router 1ssue
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= Problem is that border routers need full

routing tables to peer with non-participant
neighbor ISPs
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‘ Border routers

= We exploit the fact that routers can
also operate as Layer-2 switches
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‘ Border routers
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= Peer using a Route Reflector (RR), which aggregates on behalf of
routers

= RR using BGP Next-Hop attribute to refer peer to the appropriate
router

= Layer 2 is used to tunnel outgoing packets to neighbor router
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‘ Border routers
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‘ Border routers
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Increase In path length and router
load

Increase In router load has two causes:

o Increase in path length (router hops) means more traffic
per router

o For legacy routers, tunneling is a more expensive operation

Results shown here for configuration with IP-In-IP
tunnels at each PoP

o In practice, will probably use MPLS from aggregating router
to the egress

o This will improve load numbers significantly
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Path length / Router load solution

Basic idea iIs to exploit the fact that traffic
distribution follows a power law

0 90% of traffic goes to 10% of destination prefixes
Route packets for popular prefixes natively

Monitor traffic matrix to find popular prefixes

Periodically (weekly?) update aggregation
filters to let popular prefixes slip through
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Performance measurements

Use data from a large tier-1 ISP (“BIG-ISP™)
o Router- and Pop-level topology, traffic matrix

Define PoP as:

o “Aggregating PoP”. Has an aggregating router for each
virtual prefix (two, actually)

o “Non-aggregating PoP”: No aggregating routers, only carry
routes to virtual prefixes

Control and measure:

o % of natively routed prefixes (highest volume)
Stretch (in absolute terms, ms)

Increase in load

% of PoPs that are aggregating

FIB size

O 0O 0O O
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Worst-case FIB size (% of DFZ routing table)
Load
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Conclusions and future work

Appears very promising
o Big reduction in table size, buys years of continued growth

Looking for participation

Need to experiment with different, bigger, and more
dynamic configurations

Need to build a “planning tool”:
o Input = traffic engineering data

o Output = specific configurations and performance
estimates
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