Morpheus: Enabling Flexible Interdomain Routing Policies

Yi Wang

Ioannis Avramopoulos Jennifer Rexford

Princeton University

NANOG42 02/20/2008

http://www.cs.princeton.edu/research/techreps/TR-802-07

Large ISPs Have Rich Path Diversity

- Top 2% ASes have 10 or more AS paths for certain destinations [SIGCOMM'06]
- 5-10 router-level paths per prefix is common in large ISPs [survey on NANOG mailinglist, April 2007]
- 20 router-level paths per prefix on average in a tier-1 ISP [USENIX'2007]

Paths May Differ Significantly

- Security
 - Prefix / sub-prefix hijacking is a real threat
 - Avoiding an undesirable AS along the path
 - Large ASes are likely to have at least one valid / desirable route for most prefixes
- Performance
 - Alternative BGP paths often have better performance than the default path [PAM'07]
- Path diversity gives large ISPs plenty of choices

Convert Path Diversity into Revenue

- Different customers may want different paths
 - Financial companies: secure paths
 - VoIP / online-gaming providers: low latency paths
 - Content providers: high BW paths
 - Many others: any paths with low cost
- Unfortunately, large ISPs cannot capitalize their path diversity today
 - One "best" BGP route for all

Morpheus: Enable Flexible Path Selection

- A routing control platform that enables a single ISP to flexibly pick paths for customers
- Two components
 - Supports from intra-AS routing architecture
 - Morpheus servers with flexible path selection processes

Intra-AS Routing Architecture

Morpheus servers

physical link eBGP session iBGP session tunnel (IP-in-IP or MPLS)

- Backward compatible
 - No changes in neighboring domains
 - No changes to the routers

Intra-AS Routing Architecture

- Support for multipath already available
 - "Virtual routing and forwarding (VFR)" (Cisco)
 - "Virtual router" (Juniper)

Limitations of Current BGP Implementations

Limitation 1: Overloading of BGP attributes

• Policy objectives are forced to "share" BGP attributes

Business Relationships

Local-preference

Traffic Engineering

Difficult to add new policy objectives

Limitations of Current BGP Implementations

Limitation 2: Difficulty in incorporating "side information"

Many policy objectives require "side information"

External Information

Measurement data

Business relationships database

Registry of prefix ownership

Internal State Information

History of (prefix, origin) pairs

Statistics of route instability

• Side information is very difficult to incorporate today

Inside Morpheus Server: Policy Objectives As Independent Modules

- Each module tags routes in separate spaces (solves limitation 1)
- Easy to add side information (solves limitation 2)
- Different modules can be implemented independently (e.g., by third-parties) – evolvability

Limitations of Current BGP Implementations

Limitation 3: Strictly rank one attribute over another (not possible to make trade-offs between policy objectives)

• E.g., a policy with trade-off between business relationships and stability

"If all paths are somewhat unstable, pick the most stable path (of any length) Otherwise,

pick the shortest path through a customer"

Infeasible today

Use Weighted Sum Instead of Strict Ranking

- Every route r gets a value $a_i(r)$ of each criterion (policy objective) C_i (assigned by classifiers)
- Each criterion C_i is assigned a weight W_i
- Every route r has a final score S(r):

$$S(r) = \sum_{c_i \in C} w_i \cdot a_i(r)$$

• The route with highest S(r) is selected as best:

$$r^* = \underset{r \in R}{\operatorname{argmax}}(\sum_{c_i \in C} w_{c_i} \cdot a_{c_i})$$

Multiple Decision Processes

- Multiple decision processes running in parallel
- Each with a different set of weights, selecting potentially different best routes

Prototype Implementation

- Implemented as an extension to XORP
- A pipeline of classifier modules

Evaluation - Classification Time

Classifiers work very efficiently

Average classification time:

- Biz relationship: 5 us
- Stability: 20 us
- Latency: 33 us
- Security: 103 us

Evaluation - Decision Time

 Morpheus is faster than the standard BGP decision process, when there are multiple alternative routes for a prefix

20 routes per prefix

Average decision time:

- Morpheus: 54 us
- XORP-BGP: 279 us

Evaluation - Throughput

• Setup

– 40 POPs, 1 Morpheus server in each POP

- Each Morpheus server: 240 eBGP / 15 iBGP sessions, 39 sessions with other servers
- 20 routes per prefix

Evaluation - Throughput

• Morpheus can efficiently support a large number of decision processes in parallel

No Threat to Stability

- Only announce "non-default" routes to stub customers
- A significant portion of customers are stubs

ASN	701	7018	172	1239	3356
Customers	2634	2053	1667	1651	1425
Stub (%)	84.4%	86.1%	66.9%	78.9%	60.0%
ASN	209	3549	2914	3561	5511
ASN Customers	209 1233	3549 924	2914 460	3561 449	5511 131

Summary

- Morpheus: a simple, practical way for ISPs to capitalize path diversity
- Benefits
 - Significantly more flexible
 - No impact on stability
 - Efficient and scalable enough for large ISPs
 - Backwards compatible

Questions for Operators

- What are your top policy objectives?
- Real examples of customers demanding different routes / more control of the routes they get?
- How much control are you willing to give to your customers?
- Practical concerns?

Very interested in feedback and collaboration <u>yiwang@cs.princeton.edu</u>

More information:

http://www.cs.princeton.edu/research/techreps/TR-802-07

Backup Slide

How to Setup the Weights?

- Simple configuration interface based on Analytical Hierarchy Process (AHP)
- How does it work?
 - Operators specify preference of each pair of objectives using number 1 (equally prefer) to 9 (extremely prefer one over another)
 - AHP automatically derives the appropriate weights from the preference matrix
 - More information: <u>http://www.cs.princeton.edu/research/techreps/TR-802-07</u>