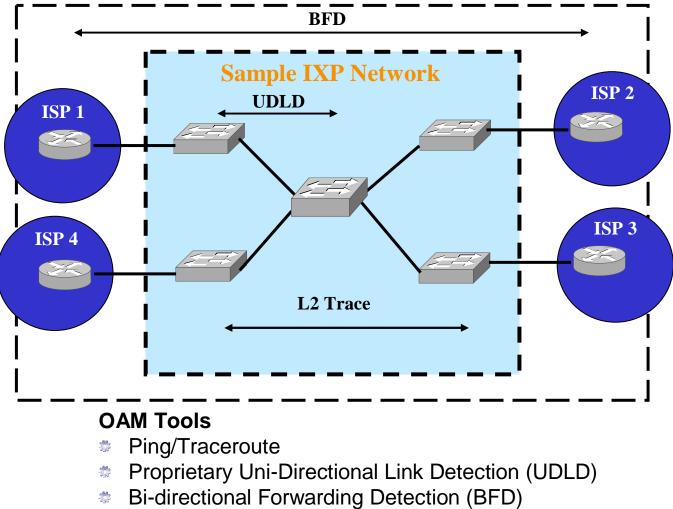
Protection and Fault Recovery at Internet Peering Points using 802.1ag CFM

Rahul Vir Product Line Manager Foundry Networks Oct 15, 2007

 FOUNDRY NETWORKS

Agenda

- Peering point diagnostic challenges
- Current OAM options
- Overview of IEEE 802.1ag Connectivity Fault Management (CFM)
- Protection and Fault Recovery at Peering points using CFM
- Troubleshooting Example
- Advantages of CFM over current OAM options
- * Q&A


Peering Point Diagnostic Challenges Potential Issues

- Fiber failure, laser or electronics failure
- Card failure / Node failure
- OAM trace and loopback path does not match data path
- Difficulty in separating Exchange Point issues from peer issues
- Insufficient tools for diagnostics and fault isolation
- Want to know more?
 - Check out travails of people using co-location facilities at http://peeringforum.com/presentations/gpf-colo-preso.ppt

Peering Point Diagnostic Challenges Desirable Features of OAM tools

- Proactive monitoring of critical links
- Provide visibility in Layer 2 network
- Ability to debug networks when component networks belong to different operators
- Diagnostic capabilities during network design and testing phase
- Troubleshooting capabilities on fault detection

Current OAM Options (1)

- Proprietary L2 Trace *****

Current OAM options (2)

- Layer 3 OAM options
 - Ping
 - Traceroute

Uni-directional Link Detection (UDLD)

- Provides fast detection of link failures by exchanging periodic health exchange packets NetIron(config)# show link-keepalive ethernet 8/1

Current State : up Local Port: 8/1 Local System ID : e0927400 Packets sent : 254 Transitions: 1

Remote MAC Addr : 00e0.52d2.5100 Remote Port : 5/1 Remote System ID : e0d25100 Packets received : 255

Bidirectional Forwarding Detection (1-hop) for BGP and IGPs ÷

- Provides ability to quickly track connectivity between two directly-connected systems

Interface

eth 1/1

eth 2/1

NetIron# show bfd neighbor Total number of Neighbor entries: 2 NeighborAddress State UP 12.14.1.1 12.2.1.1 UP

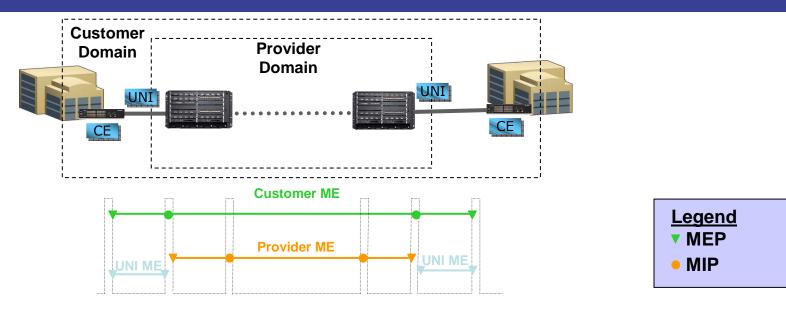
RH Holddown Interval 300000 100000 300000 100000 1

1

Current OAM options (3) **Proprietary L2 Trace**

- Probe Layer 2 Topology
 NetIron # trace-I2 vlan 10
 Vlan 10 L2 topology probed, use "trace-I2 show" to display
- Display results

NetIron # trace-I2 show


Vlan 10 L2 topology was probed 6 sec ago, # of paths: 2 path 1 from e2/7, 1 hops:

, hop input	output	IP and/or MAC address	microsec comment
1 e1/3		1.1.1.1 0004.8057.0d00	383
path 2 from	e2/5, 2 hops:		
hop input	output	IP and/or MAC address	microsec comment
1 e2/7	e2/6	1.1.1.3 00e0.8052.ea00	657
2 e2/8		1.1.1.4 00e0.803f.c400	296

Overview of IEEE 802.1ag CFM

- IEEE 802.1ag Connectivity Fault Management (CFM)
- Standard for detecting, isolating and reporting connectivity faults in a network
- Facilities for multiple nested maintenance domains over a Bridged network
- Ability to cross networks maintained by different administrative organizations
- Intended for detecting and isolating faults across link layer
- Designed to be transparent to customer traffic that is transported by the network
- CFM functions that are facilitated by 802.1ag:
 - Path discovery
 - Fault detection
 - Fault verification and isolation
 - Fault notification
 - Fault recovery

Concepts and Definitions

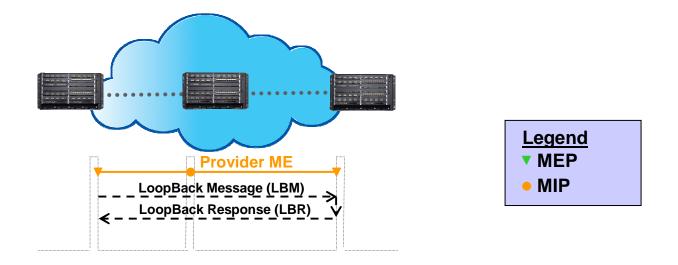
- Concepts:
 - Maintenance Entity (ME) An OAM entity that needs management
 - Maintenance Association (MA) MEs that belong to the same service in an OAM domain
 - MA End Point (MEP) A provisioned reference point that can initiate/terminate proactive OAM frames
 - Maintenance Domain (MD) A network controlled by an operator that supports connectivity between MEPs
 - MD Intermediate Point (MIP) A provisioned reference point that can respond to diagnostic OAM frames initiated by a MEP
 - MD Level It determines the MPs that are interested in the contents of the CFM frame and through which the CFM frame is allowed to pass.

Types of CFM messages

Ethernet CFM messages have a special EtherType (8902). E.g.:

Destination MAC Address	Source MAC Address	8100	C-VLAN	8902	802.1ag frame data
-------------------------	--------------------	------	--------	------	--------------------

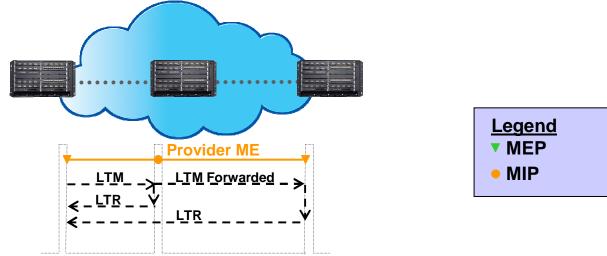
- There are different types of CFM messages:
 - a) Continuity Check Message (CCM)
 - b) Loopback Message (LBM)
 - c) Loopback Response (LBR)
 - d) LinkTrace Message (LTM)
 - e) LinkTrace Response (LTR)
- Each message type is identified by a unique Opcode:


8 5	0
MD Level Version	
Version	
Opcode	
Flags	
First TLV Offset	
End TLV(0)	

← Contents of a CFM frame

Continuity Checking

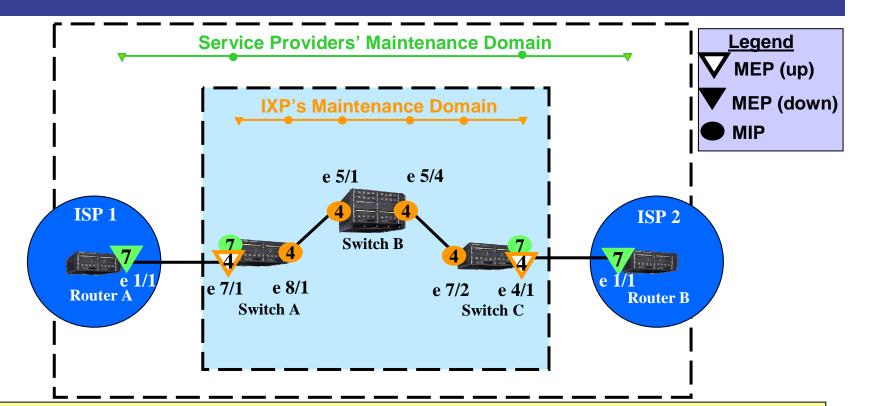
- CCM sent periodically by a Maintenance End-Point (MEP) with a multicast destination address
- Transmitted to the network at configurable intervals (3.33 msec to 10 min)
- Receiver can use it to discover the remote end-point or know the health of the transmitting station
- Loss of 3 consecutive CCM messages or receipt of a CCM with incorrect information indicates a fault
- Facility to send Remote Defect Indication (RDI) in CCM to indicate a fault
- Useful for detecting failures, cross-connect misconfigurations etc.


Loopback Operation

- A Loopback Message (LBM) is sent to a unicast destination MAC address.
- MEP at the Destination MAC address responds to the LBM message with an LBR
- Either a MEP or a MIP can respond to LBM if Destination MAC address in LBM matches that of the MAC address corresponding to the MEP/MIP
- Similar to ICMP Echo/Response (but happens at Layer 2)
- Useful for verifying connectivity with a specific Layer 2 destination

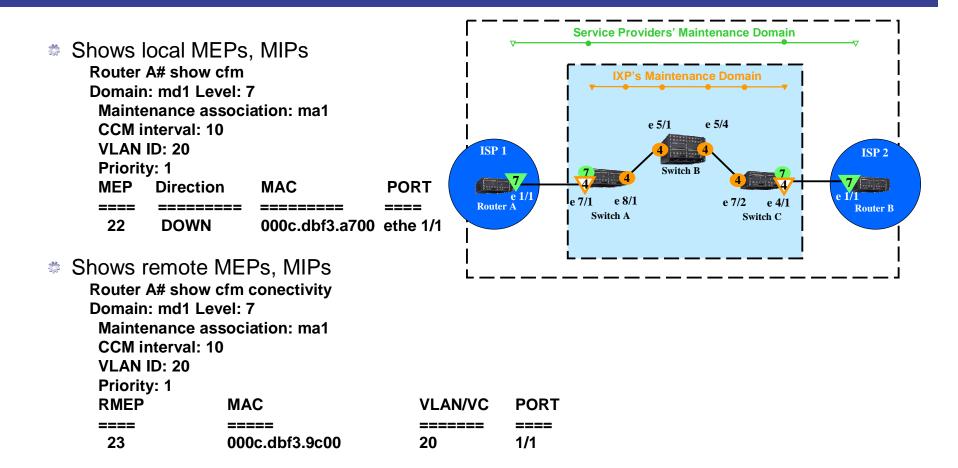
Tracing a Layer 2 Topology

LinkTrace Message (LTM) and LinkTrace Response (LTR)


- A LinkTrace Message (LTM) is sent to a multicast MAC address; payload contains a target unicast MAC address
- Each MIP at the same MD level responds with a LinkTrace Response (LTR). Message is then forwarded to the next hop until it reaches the destination MAC
- Originating MEP collects all the LTR messages to determine path through the network
- Similar to a Layer 3 Traceroute (but happens at Layer 2)
- Useful for tracing the Layer 2 path to a specific Layer 2 destination

Protection and Fault Recovery at Peering points

CFM tools provide


- Path discovery using linktrace protocol
- Fault detection using continuity check protocol
- Fault verification and isolation using loopback and linktrace protocol
- Fault notification provided by MEP due to loss or errors in continuity check messages
- Helps determine service or network connectivity in a Layer 2 domain
- Facilitates rapid troubleshooting and isolation of faults in an Ethernet network
- Provides visibility into Layer 2 network
- Promotes proactive detection of faults without waiting on customers to report a defect
 - Net result: Improves SLA offered to end-customer

Troubleshooting Example Simplified Peering Network

- Set MD level 4 for IXP operator, and MD level 7 for ISPs
- Configure ISPs peering interfaces and IXP customer interfaces as MEPs
- Configure MIPs in the IXP network
- MEP generates alerts on connectivity fault detection
- Both ISPs and IXPs can quickly detect faults
- Linktrace is used for fault isolation and Loopback for connectivity verification

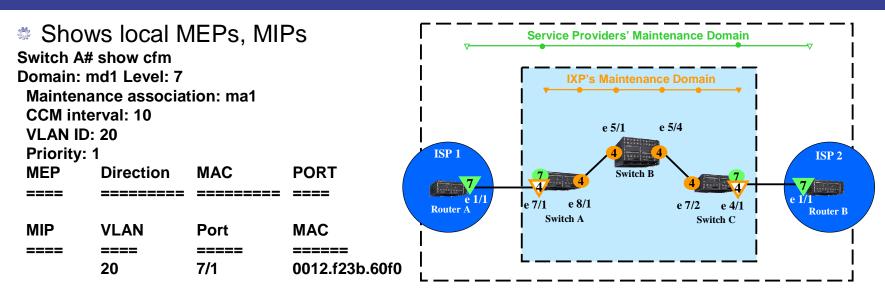
Example of Fault Management ISP View - Router A

Example of Fault Management ISP View - Router A

Linktrace

Router A# cfm linktrace domain md1 ma ma1 src-mep 22 target-mep 23 Linktrace to 000c.dbf3.9c00 on Domain md1, level 7: timeout 10ms, 8 hops

Hops	MAC Forwarded	Ingress Egress	Ingress Action Egress Action	Relay Action Nexthop
1	0012.f23b.60f0)		RLY_FDB
	Forwarded	8/1	EgrOK	
2	000c.dbfb.537	8		RLY_FDB
	Forwarded	4/1	EgrOK	
3	000c.dbf3.9c0	01/1	IgrOK	RLY_HIT
	Not Forwarded	d		
Dostinatio	n 000c dbf3 9c00 ra	bachod		


Destination 000c.dbf3.9c00 reached

Loopback

Router A# cfm loopback domain md1 ma ma1 src-mep 22 target-mep 23 DOT1AG: Sending 10 Loopback to 000c.dbf3.9c00, timeout 10000 msec Reply from 000c.dbf3.9c00: time<1ms <repeats 10 times ... > A total of 10 loopback replies received. Success rate is 100 percent (10/10), round-trip min/avg/max=0/0/1 ms.

Example of Fault Management IXP View - Switch A

Domain: md2 Level: 4

Maintenance association: ma2 CCM interval: 60

VLAN ID: 20

Priority: 4

1	-			
MEP	Direction	MAC		PORT
====	========	========		====
1	UP	0012.f23b.60	OfO	ethe 7/1
MIP	VLAN	Port	MAC	
====	====	=====	======	
	20	8/1	0012.f23b.60)fO

Example of Fault Management IXP View - Switch A

Linktrace

Switch A# cfm linktrace domain md2 ma ma2 src-mep 1 target-mep 2 Linktrace to 000c.dbfb.5378 on Domain md2, level 4: timeout 10ms, 8 hops

Hops	MAC Forwarded	Ingress Egress	Ingress Action Egress Action	Relay Action Nexthop
1	000c.dbe2.6ea0			RLY_FDB
	Forwarded	5/4	EgrOK	_
2	000c.dbfb.5378	7/2	lgrOK	RLY_HIT
	Not Forwarded			

Destination 000c.dbfb.5378 reached

Loopback

Switch A# cfm loopback domain md2 ma ma2 src-mep 1 target-mep 2 DOT1AG: Sending 10 Loopback to 000c.dbfb.5378, timeout 10000 msec Type Control-c to abort Reply from 000c.dbfb.5378: time<1ms

<repeats 10 times ... >

A total of 10 loopback replies received. Success rate is 100 percent (10/10), round-trip min/avg/max=0/0/0 ms.

Advantages of CFM over current OAM options

	IEEE 802.1ag	BFD	Proprietary UDLD	Proprietary L2 protocols	IP ping/ traceroute
Fault detection & Isolation		\bigcirc	\bigcirc	?	
Standards based		•	\bigcirc	\bigcirc	•
Visibility in L2 Networks		\bigcirc		•	\bigcirc
Visibility in L3 networks	\bigcirc		\bigcirc	\bigcirc	
Works over 10/100, GE, 10GE (future support for 40GE & 100GE)	•	•	•	•	•
Works with 802.3ad trunk groups		•	•		•
OAM domain separation to restrict visibility		\bigcirc	\bigcirc	?	\bigcirc
Foundry Networks – All rights reserved.	\bigcirc Good		Bac	1	

20

Summary CFM Advantages

Single OAM toolset for path discovery, fault detection, fault verification and fault isolation

- Fast detection and recovery leads to improved SLAs
- Provides ability to separate exchange point issues from peer issues
- Nested domains offer ability to restrict visibility in operator's network
- Standards based avoids vendor lock-in

