From NetFlow to IPFIX
the evolution of IP flow information export

Brian Trammell - CERT/NetSA - Pittsburgh, PA, US
Elisa Boschi - Hitachi Europe - Zurich, CH
NANOG 41 - Albuquerque, NM, US - October 15, 2007
What is IPFIX?

• Emerging IETF standard for flexible export of IP flow data from routers or other metering processes.

• Defines
 – a rich, easily extensible information model,
 – a template-driven data representation,
 – and a unidirectional protocol for export of IP flow data over a variety of transport protocols.

• Does not define specific requirements for flow assembly, flow key selection, etc.
History and Motivation

• IETF IPFIX working group started in 2001 to define a standard flow export protocol.

• Selected Cisco NetFlow V9 as a basis for this new protocol.
 – Evolution of previous NetFlow versions.
 – Added templates for flexible data definition.

• Developed protocol from this basis to meet defined requirements.
 – IPFIX information model is maintained as a superset of V9 information model, but otherwise the two are not directly interoperable without message translation.
Representation

• Templates in the message stream describe the data sets.
• Allows flexible and efficient representation of flows on the wire.
Information model

• The information model supports reporting a wide variety of information elements:
 – “Five-tuple” (IPv4, IPv6) and standard counters
 – Packet treatment: e.g., routed next hop and AS
 – Detailed counters: e.g., sum of squares, flag counters
 – Timestamps down to nanosecond resolution
 – Any ICMP, TCP, UDP header field
 – Layer 2, VLAN, MPLS, and other sub-IP information

• Flow keys are not limited to specific information elements.

• New IEs registered with IANA.

• Enterprise-specific IEs for private extensions.
Comparison to sFlow

• sFlow is a packet sampling protocol
 – Intended for many of the same applications as NetFlow and IPFIX.
 – Use of packet sampling instead of flow assembly reduces state overhead on measurement device.
 – Analogous to PSAMP, which extends IPFIX for export of sampled packet data.

• Both provide flexible export, but...
 – sFlow provides message types for flexibility,
 – IPFIX provides templates and information elements:
 – IPFIX allows definition of novel message types on the fly.
Status

• It’s taken longer than we’d thought, but we’re nearly done…
• Core IPFIX protocol documents completed in 2006, (probably) to be published as RFCs in 2007.
• Working group continuing to define extensions to and applications of the protocol.
 – Bidirectional flow export
 – Redundancy reduction for export efficiency
 – Flow storage and File-based interoperability
 – MIB and XML-based configuration for IPFIX devices
 – etc…
• Implementations tracking the draft standard available now.
Bidirectional Flow Export

• Bidirectional flow (biflow) metering and analysis is applicable to several use cases:
 – data reduction
 – separation of “answered” traffic from unanswered
 – full reconstruction of TCP sessions

• The IPFIX protocol has no direct support for single-record export of bidirectional flows (biflows).

• This extension allows “reversal” of any element within the Information Model for biflow export.

• To be published as an RFC this year.
Reducing Redundancy

• Technique for bandwidth-saving information export
 – Separates the export of flow records such that attributes common to several flow records are sent only once.
 – Links common flow properties to specific properties with a unique identifier.

• To be published as an RFC this year.
Flow Storage

• Many analysis tools interoperate not via direct communication, but via file exchange.
 – exchange available via a variety of transport methods (HTTP, FTP, SSH+SCP, SMTP+MIME, etc., etc.)
 – files support a variety of useful operations (compression, encryption, etc.)
 – files are a natural unit of grouping related flow data (e.g. a single security incident or query result).

• Existing de-facto standard for flow storage: NetFlow PDU files
 – Not extensible for data fields not in NetFlow.
Flow Storage: IPFIX as basis

• IPFIX defines a template-driven data representation and a rich, easily extensible information model, so:
 • Ideal basis for a flow storage format
 – Extensible and self-describing, unlike V5 PDU files
 – Adequate semantic flexibility for flow data without overhead of e.g. XML.
 – Additional applicability to IPFIX (or NetFlow V9) collection infrastructures.
IPFIX Files

• An IPFIX file is any serialized stream of IPFIX Messages.
 – Alternately, a “file transport” for IPFIX.

• Provides a set of extensions:
 – File contents
 – Error detection and recovery
 – Extended type information for enterprise-specific information elements.

• To be published as an RFC in 2008.
IPFIX Implementations (I)

• YAF (Yet Another Flowmeter)
 – takes packets from the wire or libpcap dumpfiles.
 – writes IPFIX Files or exports IPFIX Messages.
 – supports bidirectional flow export.

• SiLK (System for Internet Level Knowledge)
 – large-scale flow storage and command-line analysis suite.
 – supports NetFlow V5 and IPFIX flow collection.
 – can analyze IPFIX Files directly, as well.

• libfixbuf: an IPFIX library in C
 – Used by YAF and SiLK

• Available from http://tools.netsa.cert.org/
IPFIX Implementations (2)

• **OpenIMP**
 – provides metering processes, export/collection, and analysis tools.
 – specifically focused on active and passive quality of service measurement.
 – available from http://www.ip-measurement.org/openimp/

• **libipfix: another IPFIX library in C**
 – supports Reducing Redundancy extension
 – supports IPFIX File and mysql storage
 – used by OpenIMP
IPFIX Implementations (3)

• Versatile Monitoring Toolkit (VERMONT)
 – provides metering processes, export/collection, and monitoring tools.
 – implements IPFIX and related PSAMP (packet sampling) protocol.
 – available from http://vermont.berlios.de/

• ntop
 – web-based traffic measurement application
 – acts as IPFIX collecting process
 – available from http://www.ntop.org/
FIN

• **IPFIX** is an emerging standard for flexible flow export, representation, and storage.
 – For those who want to follow the progress:

• **Implementations available now**
 – IPFIX interoperability events in July ‘05, March ‘06, and November ‘06 so far.
Questions?

• ask now
• or later:
 bht@cert.org
 elisa.boschi@hitachi-eu.com