An Eye on the Storm:
Inside the Storm Epidemic

Josh Ballard
Network Security Analyst
Kansas State University
bal@k-state.edu
Contents

• The Headlines
• Peer-to-peer network
• So just how big is this thing?
• How It Works:
 – Update Process (deprecated)
 – Control Architecture
The Headlines

• “Bots Launching Storm Attacks Increase Dramatically Totaling 1.7 Million in June/July” -- SecureWorks, 8/2/2007

• “The Storm botnet is enormous. Reasonable guesses would put it at around 5 or 10 million machines, but nobody can be exactly sure.” -- MessageLabs 7/13/2007
The Headlines (cont.)

• “…those spikes are usually five to 10 times what we normally see,” he said, noting he suspects the botnet could be as large as 50 million computers. --MessageLabs 9/6/2007

• “Storm Worm Botnet More Powerful Than Top Supercomputers” -- InformationWeek via Prof. Peter Gutmann, Univ of Auckland
The Headlines (cont.)

- “It's probably the largest collection of infected machines we've ever seen.”
 -- Mikko Hypponen, F-Secure, Time Magazine
Where I’m Coming From

• I’m a protocol analyst (aka packet nerd)
• Protocol identification developer (http://hippie.oofle.com/)
• 7 years of research into protocol identification, with a heavy focus on peer-to-peer
My Data Source

• In the first 2 weeks of distribution of the Storm “worm”, I started analyzing packets for this “peer-to-peer botnet”
• I realized I knew the protocol, and had the silly idea that maybe I could map the network, so I did.
Storm Peer-to-Peer

- Storm piggybacks an existing peer-to-peer network operating on the Overnet protocol
- This protocol and network are long dead, but there are a select few clients actually still running the network
- This creates an interesting challenge of setting apart the bot from the non-bot.
Exchange Mechanism

• Client starts with a preset list of seed peers.
• Client sends a Overnet connect packet to those hosts.
• “Server” responds with an acknowledgement of peering, and a list of peers the client might be interested in, based on its hash.
Exchange Mechanism (cont.)

- Client sends an Overnet search packet for its own hash out to the network, again soliciting more peers.
- “Server” responds with a list of peers who might be able to provide the answer to the search.
- Process is repeated until a maximum number of peering relationships are established.
So How Big Is It?

- 11.5 million unique IP addresses since mid-April
- 6,000 average non-Storm hosts online
- 240,000 peak users in 24 hours
- 90,000 average 24 hour usage today
 - Smaller than the initial network after 1 month
May 2007

May Storm Hosts Online

Online Hosts
24 Hour Online Hosts: Max: 8375.000000
Online Hosts: Max: 44539.000000
Non-Storm Online Hosts: Max: 208890.000000

Last 24 Hours Online
Max: 208890.000000
Avg: 164597.701613

Online Non-Storm
Avg: 6276.981183
June 2007

June Storm Hosts Online

- **Online Hosts**
 - 24 Hour Online Hosts: Max: 186569.000000 Avg: 148480.422222
 - Online Hosts: Max: 41530.000000 Avg: 35932.216667
 - Non-Storm Online Hosts: Max: 8469.000000 Avg: 6083.775000

- **Last 24 Hours Online**
 - Max: 186569.000000

- **Start of Storm ECard Runs**

- **Software failure**
August 2007

August Storm Hosts Online

- Online Hosts
- Last 24 Hours Online
 - Max: 216798.000000
 - Avg: 176874.220430
- Online Non-Storm
 - Max: 63797.000000
 - Avg: 52437.822581
- Non-Storm Online Hosts
 - Max: 10276.000000
 - Avg: 4611.841398

Fake YouTube Run
September 2007

September Storm Hosts Online

NFL Tracker Run

Microsoft MSRT Update Released

Arcade Malware Run

Online Hosts

24 Hour Online Hosts:
Max: 160719.000000
Avg: 129439.158333

Online Hosts:
Max: 50240.000000
Avg: 37193.313889

Non-Storm Online Hosts:
Max: 3990.000000
Avg: 3493.663889
How It Works: Deprecated Update Process

- Once a client has reached a minimum peering point, it begins to search for updates.
- It chooses a number between 0-31, and generates a hash based on the date and that number, and begins searching for that hash.
- Controlling nodes on the network “own” those hashes for each day, and respond with update information.
- HTTP downloads ensue from encrypted URL returned.
How It Works: Control Architecture

- Storm now uses a tiered architecture for the control mechanism.
- Ultimately, there are two stages which interact on the botnet, and a third which does not.
Storm Control Stage 1

• Stage 1 hosts are those which find themselves either behind a firewall (incoming connections blocked), or with RFC1918 addresses.
• This is the “attacker” stage, those hosts which carry out outbound attacks.
• These hosts are used as spam runners and DoS bots.
• Communicate up the chain to Stage 2 hosts via TCP communications.
Storm Control Stage 2

- Storm Stage 2 nodes are those accessible from the outside world, but still not upper level control nodes.
- This is the “relay” or “messenger” stage of Storm.
- Stage 2 nodes will serve multiple purposes, from DNS for fast-flux domains, hosting for fast-flux, hosting for malware distribution, socks proxies, and TCP services for Stage 1 control.
- Stage 2 nodes are set to communicate to a Stage 3 control node, which is not represented on the p2p net.
Storm Control Stage 3

- Likely non-compromised hosts rented/owned by the authors.
- Receives proxied web requests from Stage 2 nodes.
- Issues commands to Stage 2 nodes for them and their Stage 1 members.
Conclusions

• Ultimately, this malware is brilliantly designed.
• There have been many, many infected Storm hosts, but response has been good, and the network is not as advertised.
• This is not the end of the world as forecasted.
Questions?

Attributions and Thanks:

John Kristoff, NeuStar Ultra Services - Perl debugging and guidance
Dave Monnier, REN-ISAC - Notifications and much more
Wes Young, University of Buffalo - General Perl nerdery and help
Many folks who wished to remain nameless for contributions of notification help, testing, packet captures, and many other things