Can 100Gbps wavelengths be deployed using 10Gbps rules?

Ross Saunders StrataLight Communications NANOG41 October 15th, 2007

Introduction

- 40Gb/s market just beginning to take-off
 - Driven by OC-768 port availability on next generation IP routers
- Growth driven by converged IP networks
 - VOIP, video distribution, peer-to-peer video
- Core network growth estimated to double every 2 years through 2011*
 - Growth highest in non-Internet (IP video-to-TV) sector
- Optical transport spectral efficiency and port speed must keep pace with this growth rate

* "Global IP Traffic Growth & Methodology, 2006-2011", Cisco public white paper, http://www.cisco.com/application/pdf/en/us/guest/netsol/ns537/c654/cdccont_0900aecd806a81aa.pdf

IP Traffic

100Gb/s optics requirements

- Optical reach of \geq 1,500km; \mathbf{O}
- Support 50GHz DWDM channel spacing; \mathbf{O}
- No change to existing DWDM common equipment; \bigcirc
- Non traffic-affecting upgrades \mathbf{O}
- No significant crosstalk penalty on existing DWDM channels; \mathbf{O}
- Aover p Makeusite Work with what's Chromatic dispersion tolerance of ±700ps/nm;

 - Ability to express signal through ≥ 4 ROADMs at 50GHz spacing;
 - Ability to express signal through \geq 24 ROADMs at 100GHz spacing; \mathbf{O}
 - Automated dispersion tuning/tracking, if applicable; \mathbf{O}
 - Full band tunable lasers on 50GHz ITU grid; \mathbf{O}
 - Should support Digital Wrapper (OTU4) frame structure \mathbf{O}
 - Must be bit-for-bit transparent for the 100GE client interface \mathbf{O}
 - Must be "plug and play" and installable by existing field technicians \mathbf{O}

Optical technology considerations

- Must always tradeoff performance for complexity (i.e. cost)
- Many schemes also tradeoff spectral efficiency for reach
- Must use practical electronics speeds
- Electrical signal processing is in general lower cost than optical
- Gain insight from other industries, e.g. wireless GSM (MSK), HDTV (TCM), satellite (QPSK/QAM), WiMAX/DSL (OFDM/DMT)
- Use of DSP is immature in optical communications
- Fiber nonlinearity limits practical launch powers

Spectral efficiency vs. OSNR

Implementation complexity

High spectral efficiency - 100Gbps PM-QPSK

Tx Block Diagram

Enabling technology - Optical Tunable Dispersion Compensator

Enabling technology - Optical Polarization Mode Dispersion Compensator

- PMDC consists of:
 - Two polarization controllers (PC1 and PC2)
 - Two fixed DGD elements
 - Error signal for feedback (DOP and pre-FEC BER)
- Reset-free control of any link SOP variation
- Partially compensates 2nd order PMD
- Increases mean PMD tolerance to 9ps
- Fast tracking speed

Enabling technology - Electrical Polarization Mode Dispersion Compensator

State-of-the-Art Qualified Electronics

Technology	Speed (GHz)	Foundries
SiGe BiCMOS	$f_T = 180 \sim 200,$ $f_{max} = 185 \sim 220, \&$ $0.13 \sim 0.25 \text{ um CMOS}$	IBM (8HP), Jazz (SBC13), IHP (SG25H1), …
CMOS	90nm and 65nm	TSMC, UMC, CSM, SMIC,
III-V (HEMT, HBT, etc.)	$f_{T} = 135 \sim 180,$ $f_{max} = 200 \sim 350$	Velocium, TriQuint, Agilent, Win,

In about 18 months, qualified next-gen technology would become available to public, such 250~300 GHz SiGe BiCMOS & 45nm CMOS.

100Gbps Modulation Schemes Comparison

	OOK	PSBT	DPSK	DQPSK	QPSK	PM-	PM-QPSK
						DQPSK	
Spectral	0.4	1 bits/s/Hz	0.8	1.6	1.6	3 bits/s/Hz	3 bits/s/Hz
Efficiency	bits/s/Hz		bits/s/Hz	bits/s/Hz	bits/s/Hz		
OSNR	20dB/0.1n	20dB/0.1n	17dB/0.1n	18dB/0.1n	16dB/0.1n	15dB/0.1nm	13dB/0.1nm
sensitivity	m	m	m	m	m		
PMD	1ps	1ps	1ps	2ps	2ps	4ps	4ps
tolerance							
CD	15ps/nm	50ps/nm	12ps/nm	35ps/nm	35ps/nm	140ps/nm	140ps/nm
tolerance							
Analogue	HIGH	HIGH	HIGH	MEDIUM	MEDIUM	LOW	LOW
electronics							
complexity							
Digital	LOW	LOW	LOW	LOW	HIGH	MEDIUM	HIGH
electronics							
complexity							
Optical	LOW	MEDIUM	MEDIUM	MEDIUM	HIGH	MEDIUM	HIGH
complexity							
Reach	400km	400km	800km	700km	1,000km	1,200km	1,600km
estimate							
Cost	0%	+10%	+20%	+50%	+70%	+90%	+110%
estimate							

N.B. 1 [Q]PSK schemes assume coherent detection with Rx ADC/DSP; 2 Assumes 8.5dB NECG FEC;

3 No adaptive dispersion compensation assumed, dispersion tolerances are intrinsic per modulation scheme

Summary

- Traffic growth being fuelled by video and IP rich media
 - Network traffic expected to double every 2 years till 2011
- Deploying 100Gbps wavelengths using 10Gbps rules is feasible
 - Requires advanced modulation techniques to achieve 2bits/s/Hz spectral efficiency
 - Code multiple bits/symbol to run 100Gb/s through 50GHz optical filters
 - Reach is a challenge
 - Coherent detection and/or next-generation FEC required
 - Optics is easy @25Gbaud, electronics is the challenge
 - Need very fast ADC/DSP mixed signal ASIC development