··II·II·I CISCO

> Routers and "Advanced Optical Modulation"

Gary Nicholl Technical Leader CRBU, Ottawa Canada

Overall Traffic Growth Is Straining All Known Network Architectures

Global IP Traffic—By Segment

*Source: Cisco Estimates, Ovum, Gartner, IDC, Merrill Lynch, MRG, MPA, Public Company Data

Growth is driven exclusively by Data

Legacy applications moving to IP

Video – SD, HD, Broadcast Cable

Voice

New applications exclusively IP

Video - On Demand, DVRs, Switched Digital, Video conferencing ...

Audio – Streaming audio, Internet radio, Digital juke boxes, etc....

High-Speed Data, Internet

Over-the-Top Content providers—i.e., YouTube

Household Bandwidth Needs in 2010 (U.S.):

Applications: HDTV + SDTV + PVRs + HSD + VoIP-Phones

Twenty such homes would generate more traffic than traveled the entire Internet backbone in 1995

Where does this take us ?

• **Higher bandwidths** are needed to address this growth:

10 Gig networks beginning to feel the strainCannot rely on L2/L3 aggregation:LAG $4 \times 10G \neq 40G$ Cannot rely on L1 aggregation:DWDM ports are not unlimited

• Increase wavelength capacity as soon as viable:

Move to higher data rates per lambda, i.e. 40G and 100G

BUT must operate over existing infrastructure

AND ideally with equivalent performance to 10G

Requires advanced optical modulation schemes

- **Remove** all unnecessary network layers leaving only:
 - Service layer (IP)
 - Transport layer (DWDM)
- Integrate DWDM technology on Router: IPoDWDM

IPoDWDM

- IPoDWDM vs. PMO
 - IPoDWDM reduces CAP EX
 - Less components, shelves, processor cards, etc...
 - IPoDWDM reduces OP EX
 - Less shelves, less rack space, less power, simplifies trouble shooting, etc...
 - IPoDWDM enhances
 Resiliency
 - Less Opto Electonic Components, enhanced fault recovery features, etc...

IPoDWDM - Integration

Three Key Levels of Integration

- 1. Hardware Integration
 - 40G and 10G serial interfaces on Cisco CRS-1
 - Serial 40Gig over existing 10Gig networks
 - Links of up to 900+km deployed
- 2. Control Integration
 - A to Z provisioning of services across entire network, both L1 and L3
 - Multiple standards defined
- 3. Management Integration
 - Management as two models:
 - Separate (respect PMO)
 - Integrated (IP+Transport)

40Gb/s Interfaces

- Routers Prefer single serial 40Gb/s interface
 LAG / Load Balancing limitations
- Customers prefer single 40Gb/s interfaces
 DWDM transport gear do not have unlimited ports
 DWDM is view as fixed (and sunk) asset
 1 X 40Gb/s Port is better then 4 X 10Gb/s Port
 Network capacity becomes 80ch X 40Gb/s = 3.2Tb/s

 Modulation technology is advancing rapidly
 ODB > DPSK > Coherent (DP-QPSK)
 - 40 Gb/s can be run over existing DWDM infrastructure
 - 40Gb/s approaching 10Gb/s performance

40 Gb/s DWDM Technology can be integrated on the Router

4	40 Ch DWDI		1 400Gb/s			400Gb/s		
	System		40Gb/s/CH			LAG / inv. M		
	40 ports			30 ports			0 ports	

100Gb/s Interfaces

100Gb/s is Real!

Customers Requesting Today!!

- IEEE and ITU have taken up the standard
- Routers Prefer single serial 100Gb/s interface
 LAG / Load Balancing limitiations
- Customers prefer single 100Gb/s interfaces
 DWDM transport gear are not unlimited ports
 1 X 100Gb/s Port is better then 10 X 10Gb/s Port
 Network capacity becomes 80ch X 100Gb/s = 8.0Tb/s
- 100Gb/s must operate over existing 10Gb/s infrastructures Advanced modulation schemes will achieve this level of performance Leverage the work started on 40Gb/s

100 GB/s DWDM Technology can be integrated on the Router

Summary

IP Traffic Continues to Grow

- All applications converging on IP
- 15 Exabytes per month by 2010

Need fatter pipes, not more pipes

Service Layer (IP) - Router - overcome LAG / Load Balancing limitation

Transport Layer (DWDM) - DWDM systems do not have unlimited ports

Advanced modulation required

Fatter Pipe (40G, 100G, etc..) needs to match performance of Skinny Pipe (10G)

Network is consolidating into two layers

Service (IP) & Transport (DWDM)

IPoDWDM is the next obvious step in Network Evolution

Advanced Modulation Technology can be integrated on Router

CRS-1 has integrated 10G and 40G DWDM interfaces on the router

#