Modeling the Routing of an ISP

Bruno Quoitin

(bruno.quoitin@uclouvain.be) Computer Science & Engineering Department Université catholique de Louvain, Belgium

> This is a joint work with Sebastien Tandel, Steve Uhlig and Olivier Bonaventure

Agenda

- Motivation
- C-BGP: a BGP routing solver
- Case study
 - Scenario 1: peering placement
 - Scenario 2: all single-link failures
- Conclusion

Objectives

- Why modeling ?
 - What would happen to your interdomain traffic if...
 - a link is failing ?
 - a router is under maintenance ?
 - a BGP peering is being shutdown ?
 - a new route filtering policy is planned ?
 - a new peering is established at an IXP ?
 - How would you optimize your interdomain routing for...
 - performance ?
 - cost ?
 - reliability ?

ISP Model

ISP Model

$ \rightarrow $
∢ ►

<u>Reality has:</u>

- Transit traffic
- Multiple egresses
- iBGP topology
- Route-reflectors
- Routing policies
- 215,000 destinations (and counting)
- IGP/BGP interaction

NANOG

C-BGP http://cbgp.info.ucl.ac.be

- Purpose
 - Compute outcome of BGP routing (steady-state) based on topology and routers configuration

• Features

- Complete decision process
- Versatile route filters
- iBGP hierarchy (route-reflectors)
- IGP model
- Reads BGP dumps in MRT format
- Configuration in CISCO-like language (scripts available to convert from IOS/JunOS configs)
- Supports large-scale topologies
- Open Source, LGPL
- Applied on Abilene, GEANT, a French Tier-1

C-BGP

C-BGP example

cbgp> bgp router 198. cbgp-router> debug dp Debug Decision Proces	Abilene model Show BGP routing				
AS11537, 198.32.12.9,	decisions				
[Current Best route:]				
*> 214.3.50.0/24	198.32.12.25	100	0	668 1503	i
[Eligible routes:]					
*> 214.3.50.0/24	198.32.12.25	100	0	668 1503	i
* 214.3.50.0/24	198.32.12.137	100	0	668 1503	i
* 214.3.50.0/24	198.32.12.153	100	0	668 1503	i
* 214.3.50.0/24	198.32.12.169	100	0	668 1503	i
<pre>[Highest LOCAL-PREF [Shortest AS-PATH] [Lowest ORIGIN] [Lowest MED] [eBGP over iBGP] [Nearest NEXT-HOP] [Lowest ROUTER-ID] *> 214.3.50.0/24</pre>] 198.32.12.25	100	0	668 1503	i
[Best route] *> 214.3.50.0/24	198.32.12.25	100	0	668 1503	i

NANOG

Case study: GEANT (AS20965)

Case study: GEANT (AS20965)

- Topology
 - Obtained from IS-IS trace, cross-checked with map
 - 23 nodes, 38 core links, 53 edge links (6 with upstreams)

• Routing data

- Collected using Zebra in the iBGP (only best eBGP)
- 640,897 eBGP routes
 - 150,071 prefixes (clustered in 406 groups)

• Traffic data

- NetFlow collected on all external interfaces
- Sampling rate: 1/1000
- About 150 GB per month
- Aggregated in /24 src/dst prefixes (scripts available)

- Example
 - 2 upstream providers, 1Gbps links
 - Peer with new provider Z in C

- Objective
 - Investigate addition/removal of peerings
 - Goal: better balance traffic load, reduce peering cost, ...
- Methodology
 - Scenario add-Rx
 - Consider a prospective peering *PR* (full RIB)
 - Inject routes of **PR** at router **Rx**
 - Scenario del-PRx
 - Remove the routes learned from an existing peer **PRx**
 - Metric
 - distribution of traffic among peering links (here: 6 most important links, OC-48 with upstream providers)

NANDC

2nd Scenario: link failures

- Example
 - Traffic to upstream X and Y
 - 1 Gbps links
 - Internal link failure: B ↔ C

	X		Υ
Α		600	0
В		0	500
С		0	250

2nd Scenario: link failures

- Objectives
 - Study impact of single-link internal failures on routing
 - Consider all interdomain routes
- Methodology
 - Classification of routing changes
 - Prefix reachability
 - Peer change: neighbor AS has changed
 - Egress change: same AS, egress router changed
 - Intra cost change: same egress, IGP cost changed
 - Intra path change: same egress, same IGP cost, path changed (only when ECMP is allowed)

2nd Scenario: link failures

NANDE

Conclusion

- Modeling the routing of an ISP
 - Useful to predict impact of events on service & can be used as a capacity planning tool (if TM available)
 - Successfully applied to Abilene/Geant and a French T-1
 - Capacity planning tools focus on intradomain only
 - our experiments show that most routing changes are egress/peer changes ⇒ taking BGP into account is not an option !

• Further work

- Inbound traffic: introduce neighbor ISPs in the model (already possible in C-BGP)
- Computation of failover matrices [Telkamp et al]
- MPLS/BGP VPNs

Thanks for your attention !

I will be in the room for further details, demos, ...

References

- Modeling the Routing of an ISP Network, B. Quoitin and S. Uhlig, IEEE Network, Vol 19(6), November 2005.
- Semi-automatic AS-wide converter for C-BGP, S. Tandel. Available from http://alumni.info.ucl.ac.be/standel/bgp-converter
- **Providing public intradomain traffic matrices to the research community**, S. Uhlig, B. Quoitin, S. Balon and J. Lepropre, ACM SIGCOMM Computer Communication Review, Vol 36(1), January 2006.
- The Interaction of IGP Weight Optimization with BGP, S. Cerav-Erbas, O. Delcourt, B. Fortz and B. Quoitin, In Proceedings of ICISP'06, p. 9, August 26 - 29, 2006.
- **Network-Wide Prediction of BGP Routes**, N. Feamster and J. Rexford, IEEE/ACM Transactions on Networking, April 2007.
- **TOTEM toolbox**. Available from http://totem.run.montefiore.ulg.ac.be

