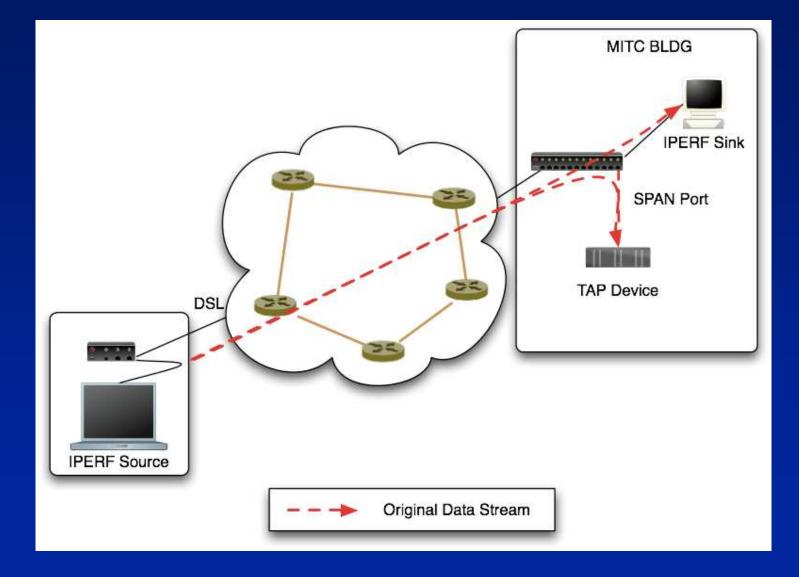
"OpenCALEA" Pragmatic Cost Effective CALEA Compliance

Manish Karir, Merit - Research and Development

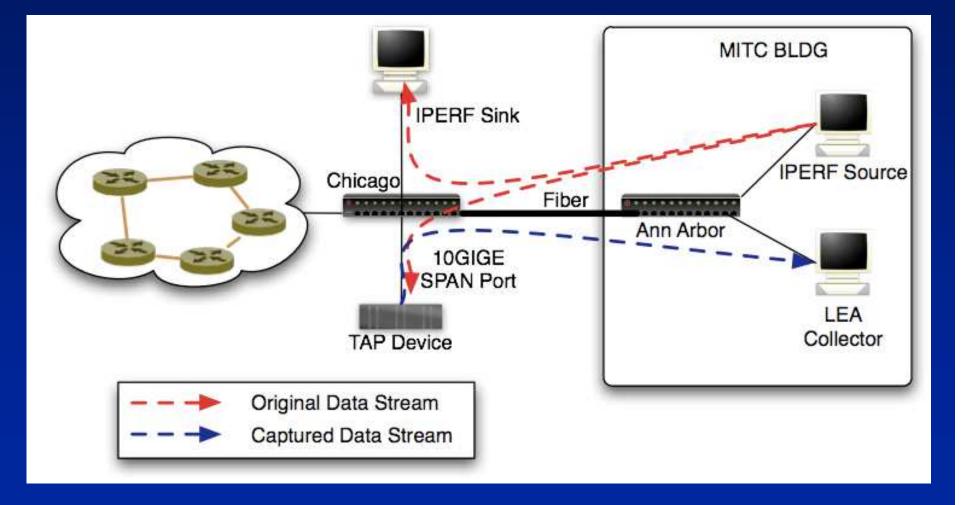

Experimentation Goals

- 1. Develop an experimental reference architecture as a model for CALEA compliance
- 2. Determine what level of compliance is possible at a reasonable price point
- **3.** Experiment with simple hardware/software in order to determine suitability for compliance
- How well will this solution scale (10G cards, multiple sites) compared to price/performance of commercial solutions
- 5. Gain a technical understanding of what is required to be CALEA compliant
- 6. Build open source tools that others can use/contribute towards

Approach

- 1. Build and deploy a packet capture platform
 - Experimental Architecture 1 -- Dell Precision GX260 Workstation, 2 GIGE interfaces for management and sampling, Pentium 4 3GHz, 1GB RAM, Linux
 - Experimental Architecture 2 -- Dell PowerEdge860 1U server, Dual Pentium 2.8GHz, 1 GIGE interface(mgmt), 1myricom 10GIGE adapter, 1GB RAM, Linux
 - Tcpdump/tethereal for packet capture -- both depend on pcap library, custom utilities to format packets appropriately for LEA
 - Iperf as the traffic generator
- 2. Test ability to capture a single data stream in the presence of varying amounts of live background network traffic
- 3. Metrics: packet loss, cost

Experiment 1 Architecture


Experiment 1 Methodology

- Background traffic for the duration of the test: ~ 190-225Mbps (Sunday evening load)
- Repeat for higher traffic load ~400Mbps (Monday afternoon)
- 3. Test
 - Send data from source to sink using iperf
 - Attempt to capture traffic stream at capture device (full packet captures not just headers)
 - Measure actual number of packets transmitted at the source and compare with number of full packets captured
 - Measure for Small/Medium/Large UDP flow

Experiment 1 Results

Experiment	Network Load	Avg Packet Loss %
10 sec UDP- 390kbps	200Mbps	< 1.0
5 min UDP - 390kbps	200Mbps	< 1.0
30 min UDP - 390kbps	200Mbps	< 1.0
5 min UDP - 390kbps	400Mbps	< 1.0

Experiment 2 Architecture

Experiment 2 Methodology

- 1. Scale up experiment 1 architecture to links that carry over 2Gbps of traffic
 - Use of better hardware platform: Dell 1U server
 - 10GiGE Myricom Ethernet Adapter
- 2. Test ability to deliver the captured packets to LEA
 - Simple custom software which operates similar to tcpdump but additionally can transmit packets to LEA
- Test ability to operate in the presence of complications. (Such as VLANS ~40vlans mirrored on single interface)
- 4. Measure ability to capture higher bitrate streams in presence of higher background traffic

Experiment 2 Results

UDP stream with average background network load of 2.3-2.4 Gbps

Experiment	Stream Bitrate	Avg Packet Loss %
5min UDP - 25K packets	1Mbps	~0.0
5 min UDP - 127K packets	5 Mbps	~0.0
5 min UDP - 255K packets	10Mbps	< 1.0
5 min UDP - 636K packets	25 Mbps	< 1.0

Experiment 2 Results

UDP stream with average background network load of > 2.5Gbps

Experiment	Packet Loss at Tap	Packet Loss at LEA
5min UDP - 100kbps	< 1%	< 1%
5min UDP - 200kbps	< 1%	< 1%
5min UDP - 400kbps	< 1%	< 1%
5 min UDP - 1Mbps	< 1%	< 1%

Experiment Conclusions

- Return Path Characteristics are Important - otherwise there can be packet loss on path to LEA.
- Check for MTU -- Encapsulation can lead to packet size > 1,500Bytes. (MTU should be able to support jumbo frames on the path to LEA).
- 3. Packet capture at > 2Gbps network load appears to be feasible.
- 4. Hardware/software cost: ~ \$2,500 (server \$1300 + 10Gige I/F card, \$1200)

OpenCALEA Software Toolset

Tap Tool:

1. Tap: Perform packet capture

- Receive packets via libpcap interface
- Create new UDP packet in appropriate format
- Encapsulate captured packet into new packet
- Timestamp information to UDP packet
- Send to LEA collection IP address
- Send the packet header information on separate UDP port
- 2. Example Usage: ./tap -d 192.168.1.1 -i any -c -f "host 192.168.1.2 and port 5001"

OpenCALEA Software Toolset

LEA Receiver Tool (Consistent with standard):

- **3.** Example of LEA collection function implementation: lea_collect
 - Receive UDP packets sent by tap
 - Remove encapsulation
 - Create standard libpcap packet based on timestamps and encapsulated packet
 - Write packet to file
 - Write packet header information sent by tap
- 4. Example Usage:

./lea_collect -f capture-file.pcap

OpenCALEA Software Toolset <u>User Front End</u> (in development): 5. calea_controller: Responsible for initiating a tap on remote tap devices but issuing the appropriate command 6. calea_collector: Responsible for listening for commands from calea controller and initiating the tap with the appropriate filters

Conclusions

- 1. A cost-effective CALEA solution was developed and tested
- 2. The solution has performed well in initial testing
- 3. The solution appears to be
 - Consistent with technical requirements
 - Cost effective
 - Practical
- 4. Soon! www.opencalea.org