Protecting Users' Privacy when Tracing Network Traffic

Stefan Saroiu and Troy Ronda University of Toronto

Challenge: Protect Users' Privacy

- Network tracing today must capture payloads:
 - Challenge: protect users' privacy
- Typically, privacy protected via 3-step process:
 - Gather raw data,
 - 2. Anonymize it off-line by hashing information
 - Preserve some info: IP prefix-sharing, object sizes, etc...
 - 3. Throw-away raw data
- Trace analysis is done on anonymized data
 - Anonymized data could become publicly available

3-step process is inadequate from a privacy standpoint!

3-Step Anonymization Doesn't Work

Known mapping attacks:

- e.g., one IP address shares no prefix with all others
- e.g., CEO is biggest recipient of e-mail

Inferred mapping attacks:

- e.g., we could guess what websites are top 10 most popular
 - google.com, www.utoronto.ca, etc..
- e.g., one 700MB file became a hot download on 11/3/2006
 - The Borat movie was released on the same date

Data injection attacks:

- > Attacker injects carefully constructed traffic
- Traffic easy to distinguish in hashed trace

Crypto attacks:

- Finding MD5 collisions takes 8 hours on a laptop today!!!
- Would today hashed trace be trivial to break 20 years from now?

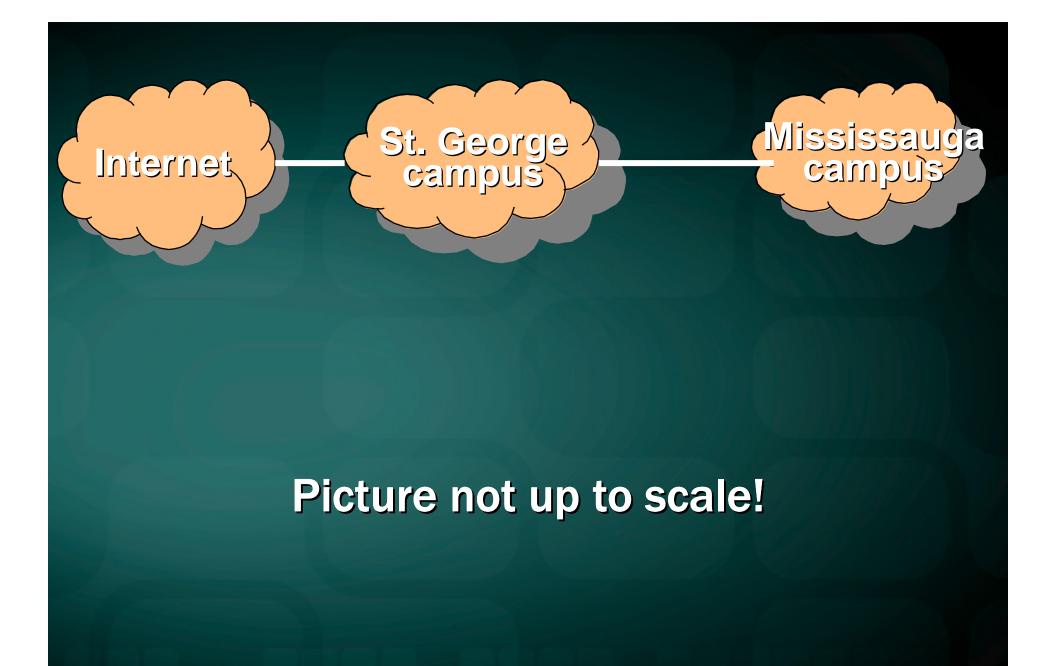
Even More Attacks are Possible

Attacks on tracing infrastructure:

- Network intrusions
- Physical intrusions

Unanticipated attacks:

- > Hard to foresee future ways to attack anonymization scheme
- e.g., OS could be revealed based on ACKs' timestamps


Legal complications (attacks?):

- Tracing infrastructure could be subpoena-ed
- Precedents exist: e.g., RIAA vs. Verizon

Lessons Learned

- No plaintext data can be written to disk. Ever.
 - Subpoenas can reveal whole profiles
 - Very serious attack with serious privacy implications

- Gathered traces cannot be made public
 - Mapping attacks could reveal private information
 - Subject to future crypto attacks
 - a PDA will break MD5 in under 1 second in 20 years
 - Unanticipated attacks are problematic

Internet

St. George campus

Port Mirroring Mississauga Campus

Stable Storage : RAM

Single Tracing Machine:

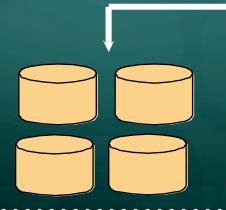
Internet

St. George campus

Port Mirroring Mississauga campus

Stable Storage: RAM

Packet Capture


TCP Reconstruction

HTTP Reconstruction

App.-level Reconstruction

Anonymization

Single Tracing Machine:

When Unplug from Power

Internet

St. George campus

Port Mirroring Mississauga campus

Stable Storage: RAM

Packet Capture

SP Reconstruction

HTTP Reconstruction

App.-level Reconstruction

Anonymization

Single Tracing Machine:

Summary

- Our infrastructure protects against:
 - Intrusion attacks
 - Disconnected from Internet
 - Legal attacks to recover raw data
 - All raw data manipulation done in RAM
 - Mapping, crypto, unanticipated, data injection attacks
 - Traces will not be made publicly available

- Mapping, crypto, unanticipated attacks still possible if anonymized trace is subpoena-ed
 - Once analysis complete, destroy trace permanently

Phishing Measurement Statistics (Very Preliminary)

- Tracing 200Mbps and approximately 5K users
 - 20GB of data collected per day
- Longest uninterrupted trace: 56 hours
- E-mail usage statistics (spam)
 - 213 Hotmail users, 721 messages received
 - 22 (3%) spam in Inbox (missed by Hotmail's filters)