Analyzing the Impact of Major Social Events on Internet eXchange Traffic

October 10, 2006

Yukiyasu Tarui
Internet Multifeed Co. / JPNAP
NANOG38
1. Background (1)

- 24 million broadband subscribers in Japan (as of June 2006)
 - DSL (1Mbps~50M) ... 14 million (slowing down)
 - CATV (~30M) ... 3 million
 - FTTH (100M~1G) ... 6 million (increasing exponentially)

Source: "Ministry of Internal Affairs and Communications"
1. Background (2)

- JPNAP
 - Ethernet-based Layer-2 IX in Japan
 - Aggregated traffic reaches 120 Gbps.
 - Increase of 50% in the past 12 months
2. Analyzing aggregated traffic on the JPNAP (1)

- Daily traffic cycle
 - E.g. Tuesdays show us almost the same trend.
 - Except national holidays, and vacation seasons

We can use this characteristic in our operation to
- Decide maintenance windows
- Apply threshold monitoring, ...
2. Analyzing aggregated traffic on the JPNAP (2)

- Sometimes traffic “anomalies” are detected.
 - Temporary fluctuation (+20% ~ -20%) of total traffic
 - Excludes subscriber issues or network outages ...

- Types of events causing traffic anomalies on the JPNAP this year
 - Microsoft/Windows Updates
 - Emergency release
 - Monthly, regular release
 - Social Events
 - Major sporting events
3-A. Windows Update
(January 7, 2006, 3:00am JST)

- Microsoft released an emergency Windows Update on that day.
- Maximum 18% Down (compared with 1 week and 2 weeks later)
- 18 hours to recover to the normal level
3-B. Windows Update
(April 27, 2006, 3:00am JST)

- Emergency Windows Update again.

- Maximum 17% Down
 - Recovered in 6 hours (less impact than Jan.7)
 - Differences between Weekend and Weekday
3-C. Windows Update (August 10, 2006, 3:00am JST)

- Even the monthly (non-emergency) Windows Updates cause a 25% drop in total traffic.

Percentile Decrease up to 25% from 1 week ago
3-D. Windows Updates (in the last 6 months)

- Comparison of monthly Windows Updates over the previous 6 months.
- What causes the dispersion (5 - 25%)?
- We have yet to figure it out.
4. Another sample

- Microsoft/Windows Updates
 - Emergency release
 - Monthly, regular release

- Social Events
 - Major sporting events
 - FIFA World Cup
 - ...
4-A. World Cup 2006
(Japanese team’s 1st match)

- Japan’s national team played their 1st match on a weeknight.
 - Kick-off at 10:00pm (Monday)
 - Decrease of 15% (maximum)

Kick-off Half-time End of the match
4-B. World Cup 2006 (2nd match)

- In local time, weekend night (Sunday)

- Decrease up to 16% from 1 week ago
4-C. World Cup 2006 (3rd match)

- Early morning
 - Kick-off ... 4:00am (Friday)
 - Increase up to 21% (maximum)
 - Continued +5% after this match

Kick-off

Half-time
4-D. How about other IXes during World Cup matches?

- AMS-IX
 - Exactly the same trend

- DE-CIX
 - Impact of traffic much less than expected

- LINX
 - A little different
 - Games which held in the evenings or weekends - when people had access to a TV - caused a drop, except we saw mini-peaks at half-time.
 - Some games - the ones which were held while people were still at work, caused a small traffic increase, evidently pulling down streams or audio commentary.
4-E. World Cup 2002, Korea/Japan
Statistics of 4 years ago

We can confirm the same trend, again.

- Decrease up to 16% from 1 week ago
- Increase up to 16%

End of this match
5. Other triggers?

- Sports events that attract many people
 - Boxing Title Matches
 - High School Baseball Championships

- Social incidents
 - Earthquakes
 - Massive Power Outages
 - Terrorist Attacks

- Internet-related topics
 - Security issue
6. Summary (1)

- Traffic could shake up and down from +25% to -25% in major social event.

- Major reasons
 - Machine behavior (ref. 3-A, B, C, D)
 - Quite a number of machines running P2P applications rebooted automatically due to Windows updates or security issues.
 - Human activities (ref. 4-A, B, C)
 - Because many people could access or leave their PCs during major social events, internet traffic will go up and down.
6. Summary (2)

- Engineers need to realize the possibility of such phenomena when they design networks or scheduled maintenances.
 - These trends are expected to continue in the foreseeable future.

- Further study
 - Compare other infrastructure utilizations with Internet traffic statistics
 - e.g. TV viewing rate
 - It might be the best approach to social engineering in the near future.
Q&A

Feedback: tarui at mfeed.co.jp

Stats
- http://www.jpnap.net/snapshot/

Acknowledgements
- Ichiro Mizukoshi, NTT
- Katsuyasu Toyama, NTT
- Seiichi Kawamura, NEC BIGLOBE
- Yasuo Igano, Verizon Business
Thank you.