
FLOW ROUTE REFLECTORS

UNDER PROTOCOL BGP

FULL MESH RR GROUP

This peering group is used for peering will all the
other route reflectors.
group FLOWSPEC_FULLMESH_RR{
 type internal;
 local-address 10.1.1.4;
 family inet {
 flow {
 prefix-limit {
 maximum 500;
 }
 no-validate ACCEPT_FLOWSPECIFICATION;
 }
 }
 neighbor 10.1.1.3 {
 import ACCEPT_FLOWSPECIFICATION;
 }
}

CLIENTS GROUP

Under protocol BGP we will have a group to peer with
all the FLOW clients in this scenario peers &
transits:

group FLOWSPECIFICATION_CLIENTS {
 type internal;
 traceoptions {
 file inetflow.log;
 flag all;
 }
 family inet {
 flow {
 prefix-limit {
 maximum 500;
 }
 no-validate ACCEPT_FLOWSPECIFICATION;
 }
 }
 Cluster 10.1.1.1;
 neighbor 10.1.2.12{
 description CLIENT_ROUTER;
}

This is the flow specification BGP group and currently
there is only one neighbor configured and is the peer-

01 router, this group will be used to add all the
remaining peers and transits.

POLICY OPTIONS

POLICY STATEMENTS

Policy map used for validating the flow routes from BGP.

policy-statement ACCEPT_FLOWSPECIFICATION {
 term ACCEPT_FLOWSPECIFICATION_ROUTES {
 from protocol bgp;
 then accept;
 }
}
policy-statement ACCEPT_FLOWSPECIFICATION {
 term ACCEPT_FLOWSPECIFICATION_ROUTES {
 from {
 protocol bgp;
 community FLOWSPECIFICATION_FULL_MESH;
 route-filter 0.0.0.0/0 prefix-length-range /24-/32;
 }
 then accept;
 }
 then reject;
}

policy-statement NO_ROUTES {
 from protocol bgp;
 then reject;
}

PEERS & TRANSIT.

Peer and Transit routers is the door to the entrusted
side this is where most of the attacks and alerts are
coming from, so it will be the main router for
mitigation and so each Peer and transit will peer with
the route reflectors to obtain FLOW SPECIFICATION
ROUTES.

PROTOCOL BGP
BGP group used to peer with the route reflectors
group INET_FLOW_BLACKHOLE {
 type internal;
 traceoptions {
 file inetflow.log size 50m;
 flag all;
 }
 family inet {

 flow {
 prefix-limit {
 maximum 500;
 }
 no-validate ACCEPT_FLOWSPECIFICATION;
 }
 }
 neighbor 10.1.199.103 {
 description FLOWSPECIFICATION_RR-3;
 import ACCEPT_FLOWSPECIFICATION;
 export NO_ROUTES;
 }
 neighbor 10.1.199.104 {
 description FLOWSPECIFICATION_RR-4;
 import ACCEPT_FLOWSPECIFICATION;
 export NO_ROUTES;
 }
}

POLICY OPTIONS

POLICY STATEMENT

Policy statement used for importing the routes from
the route reflectors, it only allows to import the
FLOWSPEC unique community for the router in question
and a more general community.

There is also a route filter that will only import
prefixes from a /32 up to a /24.

policy-statement ACCEPT_FLOWSPECIFICATION
term ACCEPT_FLOWSPECIFICATION_ROUTES {
 from {
 protocol bgp;
 community [FLOWSPEC FLOWSPEC_SAME_ROLE];
 route-filter 0.0.0.0/0 prefix-length-range /24-/32;
 }
 then accept;
}
then reject;

COMMUNITIES (GRANULARITY)

DEVICE ROLE
CITY CODE
ROUTING SOURCE
DEVICE NUMBER

community FLOWSPEC members [65000:666 65001:99];
community FLOWSPEC_SAME_ROLE members [65000:0 65101:99];

Note: communities for each device on the network are
specified on a separate document.

FLOW SPECIFICATION ROUTER

This router is the interface for adding and removing
flow specification routes the purpose of this router
is to have an interface for adding such routes with
out affecting the route reflectors and their clients.
Currently the design is based on a single homed FLOW
SPECIFICATION ROUTER but in the future the idea is to
have redundant servers.

Application

 ARBOR & DDOS MITIGATION

FUNCTIONALITY
This application uses ARBOR as the tool to identify
and attack or anomaly with a certain profile such as a
source and destination address and also port number
and such. Once it gets identified by ARBOR it will
facilitate an option to mitigate such anomaly.

The mitigation can be performed with ARBOR using flow
specification to mitigate such flow. Such mitigation
is advertised to the FLOW SPECIFICATION ROUTE
REFECTORS and they will advertise such mitigation to
the PEERS & TRANSITS with the destination COMMUNITY
that will be imported by the device that will
identified that community.

DEVICE CONFIGURATION

FLOW SPECIFICATION ROUTE REFLECTORS

PROTOCOL BGP

The route reflectors will have a peering group that
will be required for peering with ARBOR.
group ARBOR_FLOWSPECICIFATION {
 type internal;
 local-address 10.1.199.104;
 family inet {
 flow {
 prefix-limit {
 maximum 500;
 }
 no-validate ACCEPT_FLOWSPECIFICATION;
 }
 }
 neighbor 10.1.198.173;
}

POLICY OPTIONS
Policy option to accept all advertisements from ARBOR.
policy-statement ACCEPT_FLOWSPECIFICATION {
 term ACCEPT_FLOWSPECIFICATION_ROUTES {
 from protocol bgp;
 then accept;
 }
}

Routing Options FLOW.
With out using ARBOR here are some configuration
examples creating flow routes with arbor

validation {
 traceoptions {
 file flowroute.log;
 flag all;
 }
}
route test1020 {
 match {
 destination 10.200.251.254/32;
 destination-port 80;
 }
 then {
 community COMMUNITY_ROLE_XX;

 discard;
 sample;
 }
}
route test1021 {
 match dscp 1;
 then {
 community COMMUNITY_ROLE_XX;
 discard;
 }
}
route test1022 {
 match dscp 2;
 then {
 community COMMUNITY_ROLE_XX;
 discard;
 }
}
route test1023 {
 match destination 10.200.251.254/32;
 then {
 community COMMUNITY_ROLE_XX;
 routing-instance target:1000:1000;
 }
}

route test1030 {
 match {
 destination 10.200.251.254/32;
 source 10.200.250.254/32;
 source-port [70 80];
 }
 then {
 community COMMUNITY_ROLE_XX;
 rate-limit 100k;
 routing-instance target:1000:1000;
 }
}

