Active Measurement of the AS-Path Prepending Method

Samantha Lo and Rocky K. C. Chang

Department of Computing The Hong Kong Polytechnic University Kowloon, Hong Kong {cssmlo,csrchang}@comp.polyu.edu.hk June 5, 2006

Motivations

- Apply AS-Path prepending on a trial-anderror basis to control the inbound traffic
- How effective can the AS-Path prepending method be?
- What would happen to the routes after prepending a link?
- What would happen to the Internet if a lot of ASes prepended their routes?

The Measurement Setup

2. Collect routes from different vantage points

1. Announce beacon prefix to both links with prepending on L1

Results

Greatest route change on prepending length 2 \rightarrow 3

Unbalanced phenomenon

Non-responsive ASes

- 43 ASes
 - No change in either Incoming link and next-hop
- On L1 (14 ASes):

Use one next-hop only

On L2 (29 ASes):
 – Not affected by prepending on L1

Passive-responsive ASes

- 26 ASes
 - Incoming link changeNo change in next-hop
- Possible reasons:
 - No other possible routes
 - A higher LOCAL-PREF for that next-hop

Active-responsive ASes

- 47 ASes
 - Both Incoming link and next-hop change
- Possible reasons:
 - Apply shortest-path policy
 - No higher LOCAL PREF to a particular
 next-hop

Who are those Active-responsive ASes?

- AS701 (UUNET)
- AS852 (TELUS)
- AS1239 (Sprint)
- AS2914 (NTT)
- AS3257 (Tiscali)
- AS6453 (Teleglove)
- AS7018 (AT&T)
- AS7473 (SINGTEL)

Why are they affected by prepending?

Where are they ?

Where are those Active-responsive ASes?

Number of Active-responsive ASes	AS-Path length to L1		
AS-Path length to L2	4	5	6
5	1		
6	32		1
7	5	3	
8	1		2
9	1		1

The Hong Kong Polytechnic University

The Hong Kong Polytechnic University

Conclusions & Future Work

- Route changes are introduced by activeresponsive ASes
 - Shortest-path policies
 - Topology -> when they will change?
- Possible applications:
 - Predict the amount of traffic shift?
 - Discover the upstream ASes' policies.
- Replicate the measurement experiments in other sites
 - With longer prepending lengths
 - Prepend on both links
 - > 2 links

Acknowledgements

We thank

- Michael Lo for setting up the active measurement facility.
- Lorenzo Colitti for generating the graphs of the AS topology and BGP updates.

The work described in this presentation was partially supported by a grant from The Hong Kong Polytechnic University (Project no. G-U055).

