Understanding the Network-Level Behavior of Spammers

Anirudh Ramachandran
Nick Feamster
Georgia Tech
Spam

- Unsolicited commercial email
- As of about February 2005, estimates indicate that about 90% of all email is spam
- Common spam filtering techniques
 - Content-based filters
 - DNS Blacklist (DNSBL) lookups: Significant fraction of today’s DNS traffic!

State-of-the-art: Content-based filtering
Problems with Content-based Filtering

- Content-based properties are *malleable*
 - **Low cost to evasion:** Spammers can easily alter features of an email’s content can be easily adjusted and changed
 - **Customized emails are easy to generate:** Content-based filters need fuzzy hashes over content, etc.
 - **High cost to filter maintainers:** Filters must be continually updated as content-changing techniques become more sophisticated

- Content-based filters are *applied at the destination*
 - **Too little, too late:** Wasted network bandwidth, storage, etc. Many users receive (and store) the same spam content
Network-level Spam Filtering is Robust

- Network-level properties are more fixed
 - Hosting or upstream ISP (AS number)
 - Botnet membership
 - Location in the network
 - IP address block
 - ...

- Challenge: Which properties are most useful for distinguishing spam traffic from legitimate email?

Very little (if anything) is known about these characteristics!
Studying Sending Patterns

• Network-level properties of spam arrival
 – From where?
 • What IP address space?
 • ASes?
 • What OSes?
 – What techniques?
 • Botnets
 • Short-lived route announcements
 • Shady ISPs
 – Capabilities and limitations?
 • Bandwidth
 • Size of botnet army
Spamming Techniques

• Mostly botnets, of course
• Other techniques, too…
• We’re trying to quantify this
 – Coordination
 – Characteristics
• How we’re doing this
 – Correlation with Bobax victims
 • from Georgia Tech botnet sinkhole
 – Other possibilities: Heuristics
 • Distance of Client IP from MX record
 • Coordinated, low-bandwidth sending
Collection

- Two domains instrumented with MailAvenger (both on same network)
 - Sinkhole domain #1
 - Continuous spam collection since Aug 2004
 - No real email addresses—sink everything
 - 10 million+ pieces of spam
 - Sinkhole domain #2
 - Recently registered domain (Nov 2005)
 - “Clean control” – domain posted at a few places
 - Not much spam yet…perhaps we are being too conservative

- Monitoring BGP route advertisements from same network

- Also capturing traceroutes, DNSBL results, passive TCP host fingerprinting simultaneous with spam arrival
 (results in this talk focus on BGP+spam only)
Data Collection Setup

- Geniuty (AS 1)
- Cogent (AS 174)
- Comcast (AS 7015)
- Northeast Exchange (via AS 10578)

MIT (AS 3)

- Border Router
- iBGP
- BGP Monitor

- Exchange 1
- Exchange 2
Mail Collection: MailAvenger

- Highly configurable SMTP server that collects many useful statistics

X-Avenger: version=0.7.1; receiver=nym.alias.net; client-ip=209.145.97.34; client-port=4868; bounce-res=554; syn-fingerprint=16384:114:1:48:M1460,N,N,S Windows 2000 SP2, XP SP1 (seldom 98 4.10.2222); network-hops=14; network-path=18.26.0.1 128.30.0.245 18.4.7.1 18.168.0.18 4.79.2.1 4.68.100.65 209.247.10.133 4.68.105.10 65.57.72.10 204.174.217.13 64.114.44.101 209.53.130.9 209.145.111.242 209.145.97.34; network-path-time=1131736211; RBL=opm.blitzed.org (127.1.0.4), bl.spamcop.net (127.0.0.2), list.dsbl.org (127.0.0.2), cbl.abuseat.org (127.0.0.2)
Distribution across IP Space

Fraction

/24 prefix
Is IP-based Blacklisting Enough?

- Probably not: more than half of client IPs appear less than twice.
Distribution across ASes

Still about 40% of spam coming from the U.S.

<table>
<thead>
<tr>
<th>AS Number</th>
<th># Spam</th>
<th>AS Name</th>
<th>Primary Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>766</td>
<td>580559</td>
<td>Korean Internet Exchange</td>
<td>Korea</td>
</tr>
<tr>
<td>4134</td>
<td>560765</td>
<td>China Telecom</td>
<td>China</td>
</tr>
<tr>
<td>1239</td>
<td>437660</td>
<td>Sprint</td>
<td>United States</td>
</tr>
<tr>
<td>4837</td>
<td>236434</td>
<td>China Network Communications</td>
<td>China</td>
</tr>
<tr>
<td>9318</td>
<td>225830</td>
<td>Hanaro Telecom</td>
<td>Japan</td>
</tr>
<tr>
<td>32311</td>
<td>198185</td>
<td>JKS Media, LLC</td>
<td>United States</td>
</tr>
<tr>
<td>5617</td>
<td>181270</td>
<td>Polish Telecom</td>
<td>Poland</td>
</tr>
<tr>
<td>6478</td>
<td>152671</td>
<td>AT&T WorldNet Services</td>
<td>United States</td>
</tr>
<tr>
<td>19262</td>
<td>142237</td>
<td>Verizon Global Networks</td>
<td>United States</td>
</tr>
<tr>
<td>8075</td>
<td>107056</td>
<td>Microsoft</td>
<td>United States</td>
</tr>
<tr>
<td>7132</td>
<td>99585</td>
<td>SBC Internet Services</td>
<td>United States</td>
</tr>
<tr>
<td>6517</td>
<td>94600</td>
<td>Yipes Communications, Inc.</td>
<td>United States</td>
</tr>
<tr>
<td>31797</td>
<td>89698</td>
<td>GalaxyVisions</td>
<td>United States</td>
</tr>
<tr>
<td>12322</td>
<td>87340</td>
<td>PROXAD AS for Proxad ISP</td>
<td>France</td>
</tr>
<tr>
<td>3356</td>
<td>87042</td>
<td>Level 3 Communications, LLC</td>
<td>United States</td>
</tr>
<tr>
<td>22909</td>
<td>86150</td>
<td>Comcast Cable Corporation</td>
<td>United States</td>
</tr>
<tr>
<td>8151</td>
<td>81721</td>
<td>UniNet S.A. de C.V.</td>
<td>Mexico</td>
</tr>
<tr>
<td>3320</td>
<td>79987</td>
<td>Deutsche Telekom AG</td>
<td>Germany</td>
</tr>
<tr>
<td>7018</td>
<td>74320</td>
<td>AT&T WorldNet Services</td>
<td>United States</td>
</tr>
<tr>
<td>4814</td>
<td>74266</td>
<td>China Telecom</td>
<td>China</td>
</tr>
</tbody>
</table>
BGP Spectrum Agility

- Log IP addresses of SMTP relays
- Join with BGP route advertisements seen at network where spam trap is co-located.

A small club of persistent players appears to be using this technique.

Common short-lived prefixes and ASes

- 61.0.0.0/8 4678
- 66.0.0.0/8 21562
- 82.0.0.0/8 8717

Somewhere between 1-10% of all spam (some clearly intentional, others might be flapping)
A Slightly Different Pattern
Why Such Big Prefixes?

- **Flexibility:** Client IPs can be scattered throughout dark space within a large /8
 - Same sender usually returns with different IP addresses

- **Visibility:** Route typically won’t be filtered (nice and short)
Characteristics of IP-Agile Senders

- IP addresses are widely distributed across the /8 space
- IP addresses typically appear only once at our sinkhole
- Depending on which /8, 60-80% of these IP addresses were not reachable by traceroute when we spot-checked
- Some IP addresses were in *allocated*, albeit unannounced space
- Some AS paths associated with the routes contained reserved AS numbers
Length of short-lived BGP epochs

~ 10% of spam coming from short-lived BGP announcements (upper bound)
Spam From Botnets

- **Example:** Bobax
 - Approximate size: 100k bots

Proportionally less spam from bots
Most Bot IP addresses do not return

65% of bots only send mail to a domain once over 18 months

Collaborative spam filtering seems to be helping track bot IP addresses
Most Bots Send Low Volumes of Spam

Most bot IP addresses send very little spam, regardless of how long they have been spamming…
The Effectiveness of Blacklisting

- ~80% listed on average
- ~95% of bots listed in one or more blacklists
- Only about half of the IPs spamming from short-lived BGP are listed in any blacklist
- Spam from IP-agile senders tend to be listed in fewer blacklists
Harvesting

• Tracking Web-based harvesting
 – Register domain, set up MX record
 – Post, link to page with randomly generated email addresses
 – Log requests
 – Wait for spam

• Seed different subdomains in different ways
Preliminary Data: Example Phish

• A flood of email for a phishing attack for paypal.com
• All “To:” addresses harvested in a single crawl on January 16, 2006
• Emails received from two IP addresses, different from the machine that crawled
• Forged X-Mailer headers
Lessons for Better Spam Filters

• Effective spam filtering requires a better notion of end-host identity
• Distribution of spamming IP addresses is highly skewed
• Detection based on network-wide, aggregate behavior may be more fruitful than focusing on individual IPs
• Two critical pieces of the puzzle
 – Botnet detection
 – Securing the Internet’s routing infrastructure