Should Internet Service Providers Fear Peer-Assisted Content Distribution?

Thomas Karagiannis, UC Riverside

Pablo Rodriguez, Microsoft Research Cambridge Konstantina Papagiannaki, Intel Research Cambridge

int_ا____h

/erside

Research

P2P networks emerge as content distribution solutions

- No major infrastructure investments.
 Capitalizing on the bandwidth of end-nodes
- Self-scalable
 - Capacity grows at the same rate as the demand
- Resilient to "flash crowd" events
 - The network spontaneously adapts to the demand

BBC iMP - The future of Film & Television

- Sky announced competing offering
- Every major broadcaster evaluating P2P

The distribution cost is shifted to the Internet Service Providers!

- ISPs indirectly act as distribution servers
 - Peers become servers
 - Increase of ISP egress traffic
- No revenue from serving the content
 - Increased bandwidth requirements but no extra revenue

Our contributions: An empirical costbenefit analysis using real Internet traces

- We quantify the impact of peer-assisted content distribution solutions on:
 - the ISPs
 - the Content Providers
 - the end users
- We establish the potential for locality-aware "peer-assisted" solutions.
- We evaluate easily deployable architectures for efficient peer-assisted content distribution.

BitTorrent

- Tit-for-tat
 - Choke/unchoke
 - No free-riding
- Three entities:
 - Tracker
 - Coordinates the distribution
 - Torrent
 - Meta-info file
 - Peers
 - Seeds, Leechers

Outline

- P2P content distribution: The view from an edge network
 - Examine the potential for locality:
 - File hit ratios
 - Peer overlap in time
 - Potential bandwidth savings
 - Performance implications for the end user
- Impact on ISPs: A global perspective
 - Impact on downloaded/uploaded traffic volumes per ISP
 - Impact on the content provider
- Locality Algorithms and their Performance
- Implications of locality

The view from an edge network: Traces

- Packet-traces with machine readable headers

 Residential (3 traces)
 - 25/34/29 hours, 110 130 Mbps
 - 1M-5M IPs
 - web (35%), p2p (32%)

-BitTorrent:

• 13%-15% of the traffic

The view from an edge network: Methodology

1. Reconstruct all BT flows

- Tracker requests/responses
- Peer messages (e.g., handshake, HAVE, etc)

2. Identify individual peers per file

- Pitfalls: NATs, Proxies, Random peer IDs
- 3. Quantify savings if locality were present
 - Identify "unnecessary" downloads

The view from an edge network: Hit ratios & user overlap

• Hit ratio: How many users request the same content?

	January	April	May
File Hit Ratio	14%	10.4%	18.2%
Byte Hit Ratio	12%	9.6%	13%
Piece Hit Ratio	6%	6%	11.8%

- User overlap: Number of simultaneous active users for the same file?
 - 30%-70% of the time peers coexist

The view from an edge network: Potential savings ^{70%-90% of existing} pieces are downloaded

• Two scenarios:

70%-90% of existing pieces are downloaded externally while 50% of these pieces exist in active users

- Caching (all downloaded bytes are available)
- Peer-assisted (bytes in active users are available)

The view from an edge network: Implications for end-user

- Locality will improve end-user performance:
 - Wider bottlenecks locally

Outline

- P2P content distribution: The view from an edge network
 - Examine the potential for locality:
 - File hit ratios ---- (6% -18%)
 - Peer overlap in time ---- (~60%)
 - Potential bandwidth savings ---- (50% p2p, 70%-90% cache)
 - Performance implications for the end user ---- (50% faster for 24% of the population)
- Impact on ISPs: A global perspective
 - Impact on downloaded/uploaded traffic volumes per ISP
 - Impact on the content provider
- Locality Algorithms and their Performance
- Implications of locality

Impact of Peer-Assisted Content Distribution on ISPs: A global perspective

- Traces:
 - BT Tracker log of Redhat v9.0 distribution.
 - April-August 2003

- Network partition in ASes using BGP tables
 - May and August 2003 BGP tables

Content distribution scenarios

- 1. Server /server farm/CDN
- 2. P2P random-matching
- 3. BitTorrent-like P2P
- 4. Peer-*assisted* content distribution + locality
- 5. Distributed caching

A global perspective: Metrics of interest

- ISPs:
 - Ingress traffic per ISP (total & 95th percentile)
 - Egress traffic per ISP (total & 95th percentile)
 - Performance vs. ISP size
 - P2P vs. caching
- Content provider
 - Bytes served

A global perspective: Ingress traffic

Ingress traffic is reduced by a factor of 2 with locality Requires only rougly 1.5 times the peak capacity compared to caching

Downloaded data (in MB) by each ISP.

Percentages show savings compared to client/server.

Scenario		Average	95 th perc	entile
Client/server		14137	804	
P2P		13954 (1.3%)	794 (1	3%)
BT		13784 (2.5%)	786 (2.)	2%)
P2P+locality	, <	6710 (52.5%)	625 (22)	.3%)
Caching		1191 (91.6%)	459 (42,	.9%)

A global perspective: egress traffic

Each ISP is required to upload just over a copy of the file (1.9 GB)

Average uploaded data (in MB) by each ISP. Percentages show savings.

Scenario	Average	95 th percentile	
Client/server	-	_	
P2P	17239	750	
BT	17551	759	
P2P+locality	2827 (84%)	238 (68%)	
Caching	_	_	

A global perspective : Savings vs. ISP size

Impact of Peer-Assisted Content Distribution on ISPs: Content Provider

Locality results in less than half the resource requirements compared to the client-server scenario

Total egress server capacity

Scenario	Average	95 th percentile		
Client/server	59.8 TB	17 TB		
P2P+locality	28.4 TB (52.5%)	8.1 TB (52.3%)		
Caching	5 TB (91.6%)	1.6 TB (91%)		

Locality algorithms and their performance

- Locality algorithms:
 - implemented by ISPs
 - proxy-trackers
 - consistent with peer-assisted locality analysis
 - imposed by content providers
 - IPs grouped by prefix/domain rules
- Imposed solutions are not as efficient
 - Fail to match AS boundaries (contrary to proxy-trackers)
 - 50% of the optimal solution

Downloaded data (in MB) by each ISP for different locality algorithms.

	/24	/16	DOMAIN	Hierarchical	Proxy Tracker
P2P Locality (Avrg)	13964 (1.2%)	11643 (17.7%)	10864 (23.1%)	10227 (27.5%)	6710 (52.5%)
P2P Locality (95 th)	779 (3.1%)	698 (13.2%)	709 (11.8%)	689 (14.3%)	625 (22.3%)

Issues and implications

- Peer-assisted vs. existing content distribution solutions
 - Peer-assisted solutions need to address:
 - Availability when population is limited
 - e2e connectivity (NATs)
 - Security
 - Reliability
- Impact of peer-assisted content distribution on internal ISP traffic
 - Re-engineering of internal traffic may prove costly for certain ISPs

Summary

- Current P2P solutions are not "ISP-friendly" – Unnecessary traffic downstream & upstream.
- Locality-aware peer-assisted solutions:
 - Decrease egress traffic by a factor of two.
 - Provide >60% savings for ingress traffic.
 - Approximate the performance of a caching architecture in terms of peak load.

Everybody wins!

- Peer-assisted + locality content distribution:
 CDNs:
 - Push more content with less infrastructure

– ISPs:

Serve more content at the same cost

– End-users:

• More content faster