
1

Network Security Protocols:

A Tutorial

Radia Perlman
May 2005

(radia.perlman@sun.com)

2

Purpose of this tutorial

• A quick intro into a somewhat scary field

• A description of what you need to know vs

what you can trust others to do

• A description of the real problems

• “How to build an insecure system out of

perfectly good cryptography”

3

The Problem

• Internet evolved in a world w/out predators. DOS

was viewed as illogical and undamaging.

• The world today is hostile. Only takes a tiny

percentage to do a lot of damage.

• Must connect mutually distrustful organizations

and people with no central management.

• And society is getting to depend on it for

reliability, not just “traditional” security concerns.

4

Security means different things to

different people

• Limit data disclosure to intended set

• Monitor communications to catch terrorists

• Keep data from being corrupted

• Destroy computers with pirated content

• Track down bad guys

• Communicate anonymously

5

Insecurity

The Internet isn’t insecure. It may be unsecure.

Insecurity is mental state. The users of

the Internet may be insecure, and perhaps

rightfully so……Simson Garfinkel

6

Intruders: What Can They Do?

• Eavesdrop--(compromise routers, links,

routing algorithms, or DNS)

• Send arbitrary messages (including IP hdr)

• Replay recorded messages

• Modify messages in transit

• Write malicious code and trick people into

running it

7

Some basic terms

• Authentication: “Who are you?”

• Authorization: “Should you be doing that?”

• DOS: denial of service

• Integrity protection: a checksum on the data

that requires knowledge of a secret to

generate (and maybe to verify)

8

Some Examples to Motivate the

Problems

• Sharing files between users

– File store must authenticate users

– File store must know who is authorized to read

and/or update the files

– Information must be protected from disclosure

and modification on the wire

– Users must know it’s the genuine file store (so

as not to give away secrets or read bad data)

9

Examples cont’d

• Electronic Mail

– Send private messages

– Know who sent a message (and that it hasn’t

been modified)

– Non-repudiation - ability to forward in a way

that the new recipient can know the original

sender

– Anonymity

10

Examples cont’d

• Electronic Commerce

– Pay for things without giving away my credit

card number

• to an eavesdropper

• or phony merchant

– Buy anonymously

– Merchant wants to be able to prove I placed the

order

11

Sometimes goals conflict

• privacy vs company (or govt) wants to be

able to see what you’re doing

• losing data vs disclosure (copies of keys)

• denial of service vs preventing intrusion

12

Cryptography

• Crypto

– secret key

– public key

– cryptographic hashes

• Used for

– authentication, integrity protection, encryption

13

Secret Key Crypto

• Two operations (“encrypt”, “decrypt”)

which are inverses of each other. Like

multiplication/division

• One parameter (“the key”)

• Even the person who designed the

algorithm can’t break it without the key

(unless they diabolically designed it with a

trap door)

• Ideally, a different key for each pair of users

14

Secret key crypto, Alice and Bob

share secret S

• encrypt=f(S, plaintext)=ciphertext

• decrypt=f(S, ciphertext)=plaintext

• authentication: send f(S, challenge)

• integrity check: f(S, msg)=X

• verify integrity check: f(S, X, msg)

15

A Cute Observation

• Security depends on limited computation
resources of the bad guys

• (Can brute-force search the keys)
– assuming the computer can recognize plausible

plaintext

• A good crypto algo is linear for “good guys” and
exponential for “bad guys”

• Even 64 bits is daunting to search through

• Faster computers work to the benefit of the good
guys!

16

Public Key Crypto

• Two keys per user, keys are inverses of

each other (as if nobody ever invented

division)

– public key “e” you tell to the world

– private key “d” you keep private

• Yes it’s magic. Why can’t you derive “d”

from “e”?

• and if it’s hard, where did (e,d) come from?

17

Digital Signatures

• One of the best features of public key

• An integrity check

– calculated as f(priv key, data)

– verified as f(public key, data, signature)

• Verifiers don’t need to know secret

• vs. secret key, where integrity check is

generated and verified with same key, so

verifiers can forge data

18

Enough crypto to impress a date

• Secret key and hash algorithms just look

like a messy way to mangle bits

• The public key algorithms, though, are quite

understandable

• Based on some particular math problem we

assume is hard

• I’ll explain Diffie-Hellman

19

An Intuition for Diffie-Hellman

• Allows two individuals to agree on a secret
key, even though they can only
communicate in public

• Alice chooses a private number and from
that calculates a public number

• Bob does the same

• Each can use the other’s public number and
their own private number to compute the
same secret

• An eavesdropper can’t reproduce it

20

Why is D-H Secure?

• We assume the following is hard:

• Given g, p, and gX mod p, what is X?

21

Diffie-Hellman
Alice Bob

choose random A choose random B

gA mod p

gB mod p

agree on g,p

compute (gB mod p) A
compute (gA mod p)B

agree on gAB mod p

22

Man in the Middle

Alice Bob

gA mod p

Trudy

agree on gAT mod p

gT mod p

gT mod p

gB mod p

agree on gTB mod p

{data}gAT mod p

{data}gAT mod p

{data}gTB mod p

{data}gTB mod p

23

Signed Diffie-Hellman

(Avoiding Man in the Middle)
Alice Bob

choose random A choose random B

[gA mod p] signed with Alice’s Private Key

[gB mod p] signed with Bob’s Private Key

verify Alice’s signature

agree on gAB mod p

verify Bob’s signature

24

If you have keys, why do D-H?

• “Perfect Forward Secrecy” (PFS)

• Prevents me from decrypting a conversation

even if I break into both parties after it ends

(or if private key is escrowed)

• Ex. non-PFS: A chooses key S, encrypts it

with B’s public key and sends it to B (SSL)

• IESG strongly encourages PFS in protocols

25

Cryptographic Hashes

• Invented because public key is slow

• Slow to sign a huge msg using a private key

• Cryptographic hash

– fixed size (e.g., 160 bits)

– But no collisions! (at least we’ll never find one)

• So sign the hash, not the actual msg

• If you sign a msg, you’re signing all msgs

with that hash!

26

Popular Secret Key Algorithms

• DES (old standard, 56-bit key, slow)

• 3DES: fix key size but 3 times as slow

• RC4: variable length key, “stream cipher”

(generate stream from key, XOR with data)

• AES: replacement for DES, will probably

take over

27

Popular Public Key Algorithms

• RSA: nice feature: public key operations

can be made very fast, but private key

operations will be slow. Patent expired.

• ECC (elliptic curve crypto): smaller keys,

so faster than RSA (but not for public key

ops). Some worried about patents

28

Hash stuff

• Most popular hash today SHA-1 (secure

hash algorithm)

• Older ones (MD2, MD4, MD5) still around,
but “broken”

• Popular secret-key integrity check: hash
together key and data

• One popular standard for that within IETF:
HMAC

29

Hybrid Encryption

Instead of:
Message

Encrypted with Alice’s Public Key

Use:

Randomly

Chosen K

Encrypted with

Alice’s Public Key

Message

Encrypted with

Secret Key K

+

Message

30

Hybrid Signatures

Instead of:
Message

Signed with Bob’s Private Key

Use:

Message

Message

Signed with Bob’s Private Key

Digest (Message)
Message +

31

Signed and Encrypted Message

Randomly

Chosen K

Encrypted with

Alice’s Public Key

Message

Encrypted with

Secret Key K

+

Digest (Message)
+

Signed with

Bob’s Private Key

32

Don’t try this at home

• No reason (except for the Cryptography

Guild) to invent new cryptographic

algorithms

• Even if you could invent a better (faster,

more secure) one, nobody would believe it

• Use a well-known, well-reviewed standard

33

Challenge / Response

Authentication

Alice (knows K) Bob (knows K)

I’m Alice Pick Random R

Encrypt R using K

(getting C)

If you’re Alice, decrypt C

R

34

Non-Cryptographic Network

Authentication (olden times)

• Password based

– Transmit a shared secret to prove you know it

• Address based

– If your address on a network is fixed and the
network makes address impersonation difficult,
recipient can authenticate you based on source
address

– UNIX .rhosts and /etc/hosts.equiv files

35

People

• “Humans are incapable of securely storing high-quality
cryptographic keys, and they have unacceptable speed
and accuracy when performing cryptographic
operations. They are also large, expensive to maintain,
difficult to manage, and they pollute the environment.
It is astonishing that these devices continue to be
manufactured and deployed, but they are sufficiently
pervasive that we must design our protocols around
their limitations.”

– Network Security: Private Communication in a

Public World

36

Authenticating people

• What you know

• What you have

• What you are

37

What You Know...

• Mostly this means passwords

– Subject to eavesdropping

– Subject to on-line guessing

– Subject to off-line guessing

38

On-Line Password Guessing

• If guessing must be on-line, password need only
be mildly unguessable

• Can audit attempts and take countermeasures

– ATM: eat your card

– military: shoot you

– networking: lock account (subject to DOS) or be

slow per attempt

39

Off-Line Password Guessing

• If a guess can be verified with a local

calculation, passwords must survive a very

large number of (unauditable) guesses

40

Passwords as Secret Keys

• A password can be converted to a secret key

and used in a cryptographic exchange

• An eavesdropper can often learn sufficient

information to do an off-line attack

• Most people will not pick passwords good

enough to withstand such an attack

41

Off-line attack possible

Alice

(knows pwd)

Workstation Server

(knows h(pwd))

“Alice”, pwd

Compute h(pwd)

I’m Alice

R (a challenge)

{R}
h(pwd)

42

Cryptographic Handshakes

• Once keys are known to two parties, need a

handshake to authenticate

• Goals:

– Mutual authentication

– Immune from replay and other attacks

– Minimize number of messages

– Establish a session key as a side effect

43

Challenge/Response vs.

Timestamp

Alice Bob

I’m Alice

R

{R}K
compare:

vs.
I’m Alice, {timestamp}K

44

Challenge/Response vs.

Timestamp

• Second protocol saves messages, fits more

easily into existing protocols that expect

passwords

• First protocol does not require synchonized

clocks

• Second protocol must keep a list of

unexpired timestamps to avoid replay

45

Pitfalls with Public Key

Alice Bob

I’m Alice

R

R signed with private key

This might trick Alice into signing something, or

possibly decrypting something

46

Eavesdropping/Server Database

Stealing

• pwd-in-clear, if server stores h(pwd),

protects against database stealing, but

vulnerable to eavesdropping

• Standard challenge/response, using

K=h(pwd), foils eavesdropping but K is

pwd-equivalent so server database

vulnerable

• Lamport’s hash solves both

47

Salt

• Protects a database of hashed passwords

• Salt is non-secret, different for each user

• Store hash(pwd, salt)

• Users with same pwd have different hashes

• Prevents intruder from computing hash of a

dictionary, and comparing against all users

48

Lamport’s Hash (S/Key)

Bob’s database holds:

n, salt, hashn+1(pwd | salt)

Alice Bob

I’m Alice

n, salt

hashn (pwd | salt)

49

Lamport’s Hash (S/Key)

• Offers protection from eavesdropping and

server database reading without public key

cryptography

• No mutual authentication

• Only finitely many logins

• Small n attack: someone impersonates Bob

50

Mutual Authentication

Alice Bob
I’m Alice

R1

{R2}K

R2

{R1}K

51

More Efficient Mutual

Authentication

Alice Bob
I’m Alice, R2

R1, {R2}K

{R1}K

52

Reflection Attack

Trudy Bob
I’m Alice, R2

R1, {R2}K

start a second

parallel connection

I’m Alice, R1

R3, {R1}K

complete the first {R1}K

53

Timestamp Based Mutual

Authentication

Alice Bob

I’m Alice, {timestamp}K

I’m Bob, {timestamp}K

Two messages instead of three

Must assure Bob’s timestamp is different

54

Key Distribution - Secret Keys

• Could configure n2 keys

• Instead use Key Distribution Center (KDC)

– Everyone has one key

– The KDC knows them all

– The KDC assigns a key to any pair who need to

talk

• This is basically Kerberos

55

KDC

Alice/Ka

Bob/Kb

Carol/Kc

Ted/Kt

Fred/Kf

Alice/Ka

Bob/Kb

Carol/Kc

Ted/Kt

Fred/Kf

56

Key Distribution - Secret Keys

Alice KDC Bob

A wants to talk to B

Randomly choose Kab

{“B”, Kab}Ka {“A”, Kab}Kb

{Message}Kab

57

KDC Realms

• KDCs scale up to hundreds of clients, but

not millions

• There’s no one who everyone in the world
is willing to trust with their secrets

• Can do cross-realm authentication, if KDCs
trust each other

• But Kerberos protocol doesn’t say how to
find the path

58

KDC Realms

Interorganizational KDC

Lotus KDC SUN KDC MIT KDC

A B C D E F G

59

Key Distribution - Public Keys

• Certification Authority (CA) signs

“Certificates”

• Certificate = a signed message saying “I,

the CA, vouch that 489024729 is Radia’s

public key”

• If everyone has a certificate, a private key,

and the CA’s public key, they can

authenticate

60

Key Distribution - Public Keys

Alice Bob

[“Alice”, key=342872]CA

Auth, encryption, etc.

[“Bob”, key=8294781]CA

61

KDC vs CA Tradeoffs

• KDC solution less secure

– Highly sensitive database (all user secrets)

– Must be on-line and accessible via the net

• complex system, probably exploitable bugs,

attractive target

– Must be replicated for performance, availability

• each replica must be physically secured

62

KDC vs CA

• KDC more expensive

– big, complex, performance-sensitive, replicated

– CA glorified calculator

• can be off-line (easy to physically secure)

• OK if down for a few hours

• not performance-sensitive

• Performance

– public key slower, but avoid talking to 3rd

party during connection setup

63

KDC vs CA Tradeoffs

• CA’s work better interrealm, because you

don’t need connectivity to remote CA’s

• Revocation levels the playing field

somewhat

64

Revocation

• What if someone steals your credit card?

– depend on expiration date?

– publish book of bad credit cards (like CRL

mechanism …cert revocation list)

– have on-line trusted server (like OCSP …

online certificate status protocol)

65

CRL mechanism

• CRL must be published periodically, even if

no new revocations have taken place

• Enchancement: delta CRL

– these are changes since base CRL, Jan 3, 2 PM

– Only need to issue new base CRL if delta CRL

gets large

66

Strategies for PKI Hierarchies

• Monopoly

• Oligarchy

• Anarchy

• Bottom-up

67

Monopoly

• Choose one universally trusted organization

• Embed their public key in everything

• Give them universal monopoly to issue

certificates

• Make everyone get certificates from them

• Simple to understand and implement

68

What’s wrong with this model?

• Monopoly pricing

• Getting certificate from remote organization

will be insecure or expensive (or both)

• That key can never be changed

• Security of the world depends on honesty

and competence of that one organization,

forever

69

Oligarchy of CAs

• Come configured with 80 or so trusted CA

public keys (in form of “self-signed”

certificates!)

• Usually, can add or delete from that set

• Eliminates monopoly pricing

70

What’s wrong with oligarchy?

• Less secure!

– security depends on ALL configured keys

– naïve users can be tricked into using platform

with bogus keys, or adding bogus ones (easier

to do this than install malicious software)

– impractical for anyone to check trust anchors

• Although not monopoly, still favor certain

organizations. Why should these be trusted?

71

Anarchy

• Anyone signs certificate for anyone else

• Like configured+delegated, but user

consciously configures starting keys

• Problems

– won’t scale (too many certs, computationally too

difficult to find path)

– no practical way to tell if path should be trusted

– too much work and too many decisions for user

72

Important idea

• CA trust shouldn’t be binary: “is this CA

trusted?”

• Instead, a CA should only be trusted for

certain certificates

• Name-based seems to make sense (and I

haven’t seen anything else that does)

73

Top Down with Name-based

policies

• Assumes hierarchical names

• Each CA only trusted for the part of the

namespace rooted at its name

• Easy to find appropriate chain

• This is a sensible policy that users don’t have

to think about

• But: Still monopoly at top, since everyone

needs to be configured with that key

74

Bottom-Up Model

• Each arc in name tree has parent certificate (up)

and child certificate (down)

• Name space has CA for each node

• Cross Links to connect Intranets, or to increase

security

• Start with your public key, navigate up, cross, and

down

75

Intranet

abc.com

nj.abc.com ma.abc.com

alice@nj.abc.com bob@nj.abc.com carol@ma.abc.com

76

Extranets: Crosslinks

abc.com xyz.com

77

Extranets: Adding Roots

abc.com xyz.com

root

78

Advantages of Bottom-Up

• For intranet, no need for outside

organization

• Security within your organization is

controlled by your organization

• No single compromised key requires

massive reconfiguration

• Easy configuration: public key you start

with is your own

79

What layer?

• Layer 2

– protects link hop-by-hop

– IP headers can be hidden from eavesdropper (protects

against “traffic analysis”)

• Layer 3/4 (more on next slide)

– protects end-to-end real-time conversation

• Upper layer (e.g., PGP, S/MIME, XML-DSIG,

XML-encryption)

– protects msgs. Store/forward, not real-time

80

“Key Exchange”

• Mutual authentication/session key creation

(create “security association”)

• Good to cryptographically protect entire

session (not just initial authentication)

• Good to have new key for each session

• Examples

– SSL/TLS or Secure Shell (“layer 4”)

– IPsec (“layer 3”)

81

Layer 3 vs layer 4

• Layer 3 idea: don’t change applications or

API to applications, just OS

• layer 4 idea: don’t change OS, only change

application. They run on top of layer 4

(TCP/UDP)

82

AH / ESP

• extra header between layers 3 and 4 (IP and

TCP) to give dest enough info to identify

“security association”

• AH does integrity only - includes source

and destination IP addresses

• ESP does encryption and integrity

protection

83

Security Association

• First Alice and Bob establish a “security
association” (an SA)

– Session key

– Crypto algorithms

– Identity of other end

– Sequence number

– SPI chosen by other end

– Etc.

84

SPI (“security parameters index”)

Alice

Use SPI=x

Use SPI=y

Bob

IPsec packet, SPI=y

IPsec packet, SPI=x

85

ESP

Encapsulating Security Payload
IP Header

ESP Header

Encrypted

Padding

MIC

Payload

Next Header = ‘50’ (ESP)

SPI

Sequence #TCP = 6

UDP = 17

ESP = 50

IP = 4

Over ESP Header, Encrypted

Payload/Pad/Padlen/NXT

Encrypted

Pad Len NXT

86

AH (Authentication Header)

IP Header Next Header = ‘51’ (AH)

AH Header

Payload

Next Len MBZ

SPI

Sequence #

MIC

TCP = 6

UDP = 17

ESP = 50

IP = 4

AH = 51

Over “immutable” fields of IP

Header, AH Header, and Payload

87

Layer 3 vs layer 4

• layer 3 technically superior

– Rogue packet problem

• TCP doesn’t participate in crypto, so attacker can

inject bogus packet, no way for TCP to recover

– easier to do outboard hardware processing

(since each packet independently encrypted)

• layer 4 easier to deploy

• And unless API changes, layer 3 can’t pass

up authenticated identity

88

What’s going on in IETF

Security Area

• Kerberos

• PKIX (certificate format) (see next slide)

• S/MIME, PGP

• IPsec, SSL/TLS, Secure Shell

• SASL (syntax for negotiating auth protocol)

• DNSSEC (public keys, signed data in DNS)

• sacred (downloading credentials)

89

PKIX

• Based on X.509 (!)

• Two issues:

– ASN.1 encoding: big footprint for code, certs bigger

– names not what Internet applications use! So …

• ignore name, or

• DNS name in alternate name, or

• CN=DNS name, or

• DC=

90

PKI, cont’d

• PKIX is used (more or less successfully) in

SSL/TLS, IPsec, and S/MIME

• Names problematic no matter what

– What if there are several John Smith’s at the

organization?

– Just an example of the deeper issues beyond

crypto, provably secure handshakes, etc.

91

Is PKI dead?

• We use it every day with SSL

• Maybe people mean we don’t have user

certificates

• This stuff shouldn’t be hard

92

How it ought to work

• “The network is the computer”

• Create an account (username, pwd)

– System calculates a key pair

– Certifies the public key, puts it in the directory

– Encrypts the private key with the pwd, gives it to the

user or makes it downloadable

• User types name/pwd, obtains private key and

certificate, does single signon

93

Conclusions

• Until a few years ago, you could connect to the

Internet and be in contact with hundreds of

millions of other nodes, without giving even a

thought to security. The Internet in the ’90’s was

like sex in the ’60’s. It was great while it lasted,

but it was inherently unhealthy and was destined

to end badly. I’m just really glad I didn’t miss out

again this time. —Charlie Kaufman

