AS-Wide Inter-Domain
Routing Policies:
Design and/Realization

Anja Feldmann

Technisch Universitat Munchen

Hagen Bohm Olaf Maennel

Deutsche Telekom AG Technische Universitat Minchen

Christian Reiser Rudiger Volk

Technische Universitat Minchen Deutsche Telekom AG

Routing policy.

> reflects the goals of the network provider:
— which routes to accept from other ASes
— how. to manipulate the accepted routes
— how to propagate routes through network
— how to manipulate routes
before they leave the AS

Example network

Routing policy.

> reflects the goals of the network provider:
— which routes to accept from other ASes
— how! to manipulate the accepted routes
— how to propagate routes through network
— how to manipulate routes
before they leave the AS

— which routes to send | ,
) p : =

e.g., Import prefix filters

Routing policy.

> reflects the goals of the network provider:
— which routes to accept from other ASes
— how to manipulate the accepted routes
— how to propagate routes through network

— how to manipulate routes
before they leave the AS E r3 5

— which routes to sencl
to another AS

ingress: e.g., marking

Routing policy.

> reflects the goals of the network provider:
— which routes to accept from other ASes
— how! to manipulate the accepted routes
— how to propagate routes through network

— how to manipulate routes @
before they leave the AS -~ r3

e.g., Route Reflectors

Routing policy.

> reflects the goals of the network provider:
— which routes to accept from other ASes
— how! to manipulate the accepted routes
— how to propagate routes through network
— how to manipulate routes
before they leave the AS

Routing policy.

> reflects the goals of the network provider:
— which routes to accept from other ASes
— how! to manipulate the accepted routes
— how to propagate routes through network

— how to manipulate routes
before they leave the AS E r3 5

— which routes to send |
to another AS /'

C

peer

== ==
— customer

e.g., export filters

Routing policy.

» Current state ofithe art:
— iII-specified (e.g., policy database is the network itself)
— undergoes constant adjustments
— customer specific
— conglomerate of BGP statements
— rrealized by manual configuration of routers

> Goal: increased abstraction level

Routing policy: Examples

Policy/service examples:

— honor business relationships
(e.g., customers get full-table; peers only customer prefixes)
(e.g., prefer customer routes over peer routes over
upstream routes)

— allow customers a choice of route
(e.g., on customer request do not export prefix to AS x, etc.)

— enable customer traffic engineering
(e.g., prepend x times to all peers or to specified AS)

— enable DDoS defense for customers
(e.g., blackholing by rewriting the next hop)

> An consists of

Routing policy: Specific example

» Blackholing
— trigger: community
— mechanism: rewrite next-hop of route
— safeguard: no-export community

> Implementation

— on Ingress
e allow blackhole community for specific customers
o filter blackhole community for other BGP neighbors
e rewrite next hop
— 0N egress
o filter blackhole route at egress

Expressing an atomic unit

» ldentifyy a BGP session set:

— network specific:
via parameters, selected services, etc.

— related to network elements
— vendor indepenadent

» Apply some filter:
— BGP specific: prefix, community, AS lists
— vendor specific

» Perform some action:

— BGP specific: rewrite parameters,
add community

— vendor specific

Policy realization

> System components:

— network module
o description ofinetwork elements

— policy and service module
o abstract definition of individual routing policies

— router backend module
e library of vendor specific code fragments

— configurator
° Input: above modules

° output:
— appropriate vendor specific configlets
— (alternative) RPSL

Network module

» Task:
— captures current network components
— captures current service subscriptions

> lop-level elements:
— router

— BGP neighbor

— BGP session
— services

Example: <reuter>

<router>
<pame> </name>

<leophack> </loopback>
<location>
<city> </city>
<counitry> </country>
<regron> </region>

</location>
<system>

<hw> </hw>
<sSW> </SW>

</system>
</router>

Example: <hgpnenghhnor>

<pgpnerghber>
<pame> </name>

<pnerghborAS> </nerghborAS>

<perghbortype> </neirghbortype>
<Session> </session>

<fFilter _i1mport> </frilter_ import>
<frlter_export> </Ti1lter_export>

<services></services>
</bgpnerghbor>

Example <bgpsession>

<pgpsessiIon>
<pame> </name>
<myrouter> </myrouter>
<remotelPaddr> </remotelPaddr>

<services></services>
</bgpsession>

<pgpsessiIon> <name> </name>

<services>
= >
<case><firlter> </Ti1lter>
<med_value> </med_value></case>
<case><firlter> </Ti1lter>
<med_value> </med_value></case>
<default><med_value> </med_value></case>
</egress_med>
</services>

</bgpsession>

Policy and service module

»> lask:

— define each unit ofithe AS-wide policy
* using an intermediate abstraction
e independent of any other part of the policy

> Realization:

— express each unit by
e selecting session sets and then

e applying sets of BGP operations
(the BGP operations are referenced by names!)

> Top-level elements:
— policy
— service

Example routing policy.

<enferced policres>

<pame> </name>
</enforced _polrcres>
<avarlabe services>

<pame> </name>
</avairlable services>

<service>
<name> </name>
<parameter> </parameter>
<sessionset>
<direction> </direction>
<condrtron> </condition>
<task>
<firagment> </fragment>
<fFragment> </fragment>
</task>
<default>

<fFragmenit> </fragment>
</default>
</sessionset>
</service>

Backend module

» Task:
— capsules vendor specifics
— provide library of named fragments
— each fragment capsules a set of BGP statements

> Realization:
— for each vendor provide vendor specific realization
— access of network (BGP session / router) values:

e via “variables” (replaced in session context):
— e.g., $session.neighbortype

— e.g., community_ Filter name(*“r1os”, “blackhole’)

Back end module <fFragment>

<hragment>
<pame> </hame>
<10S>
<pbgp>

</bgp>
<routemap>
<map>

<routemapaction>

</routemapaction>
</map>
</routemap>

Back end module <fFragment>

<list>

<type>community</type>
</list>
</10S>
<JUNOS>

</JUNOS>
<RPSL>

</RPSL>
</fragment>

Configurator

» Task:
— parse three databases (one for each module)
— check consistency

— combine individual atomic unit in
routing policy for each BGP session
— generate router configuration pieces

(e-BGP part of router config, including filter lists for
Cisco, Juniper, and RPSL)

> Realization:
— CISCO: “continue” and/or folding
— JUNIPER: “next policy”
— RPSL: “refine”

Configurator output (1.)

bap 1
nerghbor 2.1.1.2 remote-as 2
nerghboer 2.1.1.2 route-map cl_routemap_in In
nerghbor 2-1.1.2 route-map cl_routemap out out
I
route-map cl roeutemap_out deny 100
match 1p address prefix-l1st martrans
route-map cl routemap_out permit 200
set comm-Irst out Fltr communities delete
contirnue 300
route-map cl routemap_out permit 300
matech community export _all
I
route-map cl routemap_In deny 500

community-lrst expanded 1n_Fltr _communities permit

o O !

I
ip prefix-list cl-import permit 2.1.1.0/22 ge 24 le 24

1-*

community-l1st expanded 1n_Ffltr _communities permit 64900:

Ip prefix-list cl-blackhole permit 2.1.1.0/24 ge 32 le 32

Ip prefix-list cl-blackhole permit 2.1.1.0/24
Ip prefix-list martians permit ...

Configurator output (2.)

route-map cl routemap_oukt deny 10
match 1p address prefix-l1st martians
route-map cl routemap_out permit 15
mateh cemmunity export all

set comm-Irst out FItr communities delete
!

route-map cl routemap_in deny 10
matech 1p address prefix-l1st martrans
route-map cl routemap_in permit 76
match 1p address prefix-list cl-import-cl-blackhole
match community blackhole
set comm-lirst 1n_Fltr _communities delete
set 1Ip next-hop 172.24_.42_.172
set community 1:1 no-export additive
route-map cl routemap_iIn permit 77
match 1p address prefix-list cl-blackhole
match community blackhole
set comm-lrst ©n_Fltr communities delete
set 1Ip next-hop 172.24.42_.172
set community 1:1 no-export additive

SUmmany.

Benefits of the system for an ISP:

> explicit specification of the AS-wide routing policy
independent of the network!

> separation of the routing policy in atomic units
> easy introduction of new services

» easy to add customers, routers, etc...

» easy to take advantage of new router features
> respects knowledge domains

»> automatically generates appropriate router configlets

Reqguirements

> Abstraction

— policies should be expressible via high-level language primitives.

»> Customizable
— parameters depend on peer (e.g., prefix filters from IRR)

»> Modularity / Separability
— policies needs to be independent from vendor code (e.g.,
refine-statements infRPSL, cisco “continue”, juniper “next policy”)

> Extensibility

— add new or change policies or services
— should be possible to take advantage of new router features

> Debugability
— e.g., prefix-filter, and community-lists should have same name
(number) on all routers.

> Testability

— automatically generate the outcome of policy combinations for
exploration in tests (work-in-progress)

	AS-Wide Inter-Domain Routing Policies: Design and Realization
	Routing policy
	Routing policy
	Routing policy
	Routing policy
	Routing policy
	Routing policy
	Routing policy
	Routing policy: Examples
	Routing policy: Specific example
	Policy realization
	Network module
	Example: <router>
	Example: <bgpneighbor>
	Example <bgpsession>
	Policy and service module
	Example routing policy
	Backend module
	Back end module <fragment>
	Back end module <fragment>
	Configurator
	Configurator output (1.)
	Configurator output (2.)
	Summary

