
Needle in a Haystack 

Improving Intrusion Detection Performance in 
University settings by removing “good traffic” to 

better focus on “bad traffic”



The Person Talking

● Paul Tatarsky paul@tatarsky.com
● Network Intrusion Detection (NIDS) 

operator/UNIX sysadmin in some form since 1990
● Watched a lot of packets go by.
● Most good, some bad, more than a few ugly



The Analogy

● That one unpublished exploit stream that smashes 
your named daemon stack and gets a shell on your 
DNS server is the needle. (chrooted of course)

● Benign or understood traffic is the hay.
● It is easier to find needles with less hay.
● It is not always easy or safe to define hay



The Environment

● University of California Santa Cruz, School of 
Engineering (where I am a IDS operator)

● Growing from “one uplink, one core switch” to 
multiple buildings, numerous core switches, 
several Gbit uplinks.

● No true firewall in place
● Snort (www.snort.org) is the IDS engine of choice
● Using spans to capture traffic
● IDS is the main source of protection for the 

department



The Problem

● Need to better focus on unknown traffic while 
removing known sources of heavy “good” streams

● Several legit high flow sources in department
● Older Snort IDS platform running on Intel 

hardware showing signs of age.
● A need to consider some “internal” monitoring 

with all the new subnets and wireless
● Too many packets, not enough IDS operator time
● Budgetary issues



Why Does this Matter to Larger 
Networks? (Net/Com/Gov)

● Consider us a micro-version of what happens to 
“exposed” machines (no firewall, all sorts of crazy 
stuff, student run machines, botnets love us, etc)

● If we can better focus on our relatively small data 
flows using lower end hardware, could map up to 
major performance gains at larger networks.

● Less time spent watching known flows means 
more time (processing power to apply/IDS 
operator time) to spot exploits, botnets, spam 
proxies, and DDOS attacks. 



Flow size/content R&D started

● How big are our flows normally?
● Traffic analysis needed to understand “normal” 

flows
● Are our IDS signatures even looking for things 

related to most of these flows?
● Can we compare what we are looking for better 

with what we are capturing for IDS alerting?



How to define “hay”

● Some of our known “good” streams:
– Sql returned data queries to Genome site
– HTTP/FTP/Rsync downloads known sources 

(ISO images)
– P2P downloads?
– File systems (NFS/SMB/GPFS/AFS)
– Backups
– Automatic updates for various platforms
– VPN traffic (once established?)
– Video conferencing/VOIP



Finding Flow Sizes Opensource

● Tcpflow (Jeremy Elson) to break them out to disk 
and take a look at them.

● Snort (Marty Roesch) in “session log” mode to do 
similar to above.

● Tcpdstat (Kenjiro Cho) to summarize flows by 
pcap capture. Modified slightly Dave Dittrich.

● Netflow statistics or other switch level stats
● Ntop gives a nice web based “traffic” summary
● Gives an idea of who is moving what around
● Are there repeated large items? Of course.



Sample Top Flow Sizes > 50MB

>50

>100

>256

>500

1000

0 50 100 150 200 250 300 350 400

Flow Sizes (Mbytes)

Number of Flows

For a small sample period at UCSC SOE...



Top Flows as Percent of Data 
Capture

● Compared to these ~600 flows there were 
>300,000 smaller flows (which sort of skews the 
graph)

● However, the total data size of the 600 flows 
represented 33% of all traffic in bytes.

● The top twenty flows represented 7% of all traffic 
in sample.

● Sample period was small. Working on longer 
range statistics.



Hay definition with Libpcap “not” 
clauses

● Libpcap can define pretty elaborate “not” rules to 
exclude traffic by packet patterns

● When used with Snort can prevent engine from 
ever seeing the packets

● But assumes you know quite a bit about the 
protocol and “content” is hard to define

● No flow concept
● Get it wrong and away goes your IDS alerts



Snort Pass Rules and Flowbits

● More precise than libpcap filters since includes 
flow and packet content definitions.

● Flowbits construct can do some session level 
markers and is very powerful “hay” finder

● Still means Snort reads those packets into its 
engine just to discard them.

● Get pass rules wrong and there go your alerts.



Sample Snort Pass Rule

pass tcp any any -> any any (msg:"Likely ISO 
download";flow:from_server,established; 
content:"|00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 01|CD001|01 00|"; classtype:misc-
activity; sid:1415086; rev:1; )

You can put a lot more “00 00” in there at the front.
Can I certify no attack will ever use this string? No.



Some simple tests show rough 
impact

● Send the Fedora 3 Disk 1 ISO image between two 
hosts using netcat on port 9999

● 638MB flow
● Capture packets in a few different ways
● Alter the method used to “ignore” parts of the flow



CPU Usage Baselines

Snort pass word match with 
non-match alert

Snort pass match rule only 

Snort alert rule content 
match

Snort alert rule content no 
match

Snort alert rule no content 
check

Tcpdump not shost/sport 

Tcpdump not port 9999

Tcpdump

0 1 2 3 4 5 6 7 8 9 10

CPU Usage

User

System



What if my capture card dropped 
the packets for me?

● Can it keep state on the streams?
● Can it detect some of the “good patterns” and then 

stop handing the stream to the interface?
● Can I still perhaps record the packets somewhere 

to make sure I didn't falsely drop a stream?
● Or at very least, can I get rid of some flows by 

using layer 3 defines?



Started looking around for such an 
animal

● Introduced to the Metanetworks MTP card
● Uses Snort format rules to define “capture” or “no 

capture” rules
● Keeps state and handles flows
● Has a “mirror” port that passes the capture without 

the filtering to another unit. Ala a mini-
regeneration tap. 

● Hands packets that are marked with capture rules 
“upstream” to a capture supporting UNIX 
interface



Picture of Setup
The DepartmentThe Outside World

Main Capture

Mirrored
Capture



Started with translation of L3 “not” 
BPF rules into MTP card 

not ( host backup1 and port 13782 ) 
and not host updates.redhat.com 
...

Into snort format:

●pass tcp $UCNET any -> $BACKHOST 13782 (msg:"@backups";)
●pass tcp 66.187.224.40 any -> $UCNET any (msg:"@redhatupdates1";)
●pass tcp 209.132.176.40 any -> $UCNET any(msg:"@redhatupdates2";)



CPU/Flow size impact post MTP L3 
filters

Tcpdump drop shost/sport 
9999 at MTP

Tcpdump not shost/sport 
data

Tcpdump drop 9999 at MTP

Tcpdump not port 9999

Tcpdump

0 0.5 1 1.5 2 2.5 3

CPU Usage

User

System



Continued Research into Content 
based rules

● Would like to move many content based “pass” 
rules down into hardware

● Would like some way to pass Snort flowbits state
● Generic ISO header pass rules into hardware
● Genome data pass rules with pcre content
● Passive FTP downloads. Trigger a pass based on 

“PASV/PORT” or “EPSV/EPRT” rule which 
reads ports to discard?

● Automatic update services (Windows Update, 
yum, cvsup, autoupdate, up2date)



What could it gain you?

● Ability to prune or focus on very specific targets 
in high volume traffic environments

● Perhaps focus on core gear for attacks against it. 
Perhaps remove known P2P flow types to focus 
more on attacks leaving your ranges.

● Less powerful PC platforms able to “keep up” due 
to offload of capture to card.



Slide O' URLs
Libpcap

http://www.tcpdump.org/
Ethereal

http://www.ethereal.com/
Snort

http://www.snort.org/
Tcpflow

ftp://ftp.circlemud.org/pub/jelson/tcpflow/
Tcpdstat (modified)

http://staff.washington.edu/dittrich/talks/core02/tools/tools.html

Ntop
http://www.ntop.org/

MTP Card
http://www.metanetworks.net/


