—w——u_. (CarnegieMellon

= CERT

: ] i Situational
——=—Software Engineering Institute Awareness

Preparing RIR Allocation Data
for Network Security Analysis Tasks

Brian Trammell <bht@cert.org>
for NANOG 31, San Francisco, May 23-25, 2004

CERT® Network Situational Awareness Group
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

The CERT Network Situational Awareness Group
is part of the Software Engineering Institute.

The Software Engineering Institute is spbonsored by
the U.S. Department of Defense.




Background

* Actors in incident and traffic analysis data are
expressed by IP address.

* Analysis operations categorize events at higher
levels of abstraction:
— by location
— by organization
— by network

* Correlation of incident and traffic analysis data
with regional registry allocation data bridges the

gap.



Requirements

* Group addresses into CIDR blocks.

* Provide network names, country codes, and POC
handles for each block.

* Provide a tree view of IPv4 address space.

— allows association of an address with a network at any
level of allocation or assignment

— we are not yet interested in IPv6 because we receive
no incident or traffic data from IPvé networks.

* Run periodically, require little operational support.
— used for batch analysis
— e.g., RIPE database mirror would be overkill



Data Sources

* Data from three RIRs:
— ARIN (bulk data by request)
— RIPE (publicly-available ripe.db.inetnum)
— APNIC (publicly-available apnic.db.inetnum)

* 2,061,995 ranges (2,123,270 CIDR blocks) from
these three sources (as of May 5, 2004)

* What about LACNIC?

— LACNIC data omitted from counts pending bulk data
request.



Assumptions and Anomalies

* Early in the effort, we assumed that...
— the allocation tree is strictly a tree.
— the registries agree on all allocations.

— allocations and assignments are universally done in
terms of CIDR blocks.

— supplementary information (e.g., modification dates)
are stored in a universally uniform format.

* >99.3% of ranges conform to these assumptions



Transformations

® Our tool chain (“AddrTree”) was designed to process
allocation data from the RIRs for use in categorizing
actors in incident and traffic data.

* AddrTree performs the following transformations:

Normalization of modification dates.
Elimination of redirect records.
Resolution of conflicts between regional registries.

Arrangement of allocations and assignments into a single tree
structure.

Detection of anomalies in address ranges:
— “Erosions” — off-by-one errors in allocation range ends.
— “Inversions” — violations of tree hierarchy.

Splitting of allocation ranges into CIDR blocks.



Step |: Parsing and Stripping

* Extracts essential information from registry text
databases and transforms it into a compact, line-
oriented text format

* Normalizes modification dates to ISO860|
— Two-digit years (2,566)
— YYYYDDMM date format (7)

— only unambiguous instances of this anomaly can be detected.

— Dates beyond end of month (4)

* Eliminates non-network (redirect) records
(1,692)



Step 2: Merging

* Merges allocations between two registries into a
single tree

— Applied in stages to build a “world” allocation tree

* Detects and resolves conflicts between registries
— most of these are early registrations
— first by national affiliation (2,580)

— the RIR with responsibility for the network’s country is
probably more correct

— then by registry seniority (3)

— arbitrary, but avoids human intervention



Step 3: Stacking and Splitting

* Range “erosions” are corrected before stacking.

* Stacking notes each record’s depth in the tree —
necessary to maintain hierarchy of ranges after
each range is split into CIDR blocks.

* Range “inversions” are detected during stacking.

* Each range record is replaced with one range per
CIDR block covered by the record.
— Growth in number of records is small.

— > 99.98% of allocation ranges are a single block wide.



Range “Erosion”

* Off-by-one errors at start or end of a probable
single CIDR block range

— Missing network/broadcast address (“inner erosion”)
— e.g., 10.2.3.0/24 as 10.2.3.1 - 10.2.3.254

— End of range non-inclusive (“outer erosion”)
— e.g., 10.2.3.0/25 as 10.2.3.0 - 10.2.3.128

* Inner erosions break CIDR block splitting.

— 10.2.3.0/24 vs. 10.2.3.1/32, 10.2.3.2/31, 10.2.3.4/30, 10.2.3.8/29,

10.2.3.16/28, 10.2.3.32/27, 10.2.3.64/26, 10.2.3.128/26, 10.2.3.192/27, 10.2.3.224/28,
10.2.3.240/29, 10.2.3.248/30, 10.2.3.252/31, 10.2.3.254/32

* Quter erosions may cause inversions.



Inner Erosion Example

0.

.254 255

A(24)

A as CIDR block (single /24)

A’ (eroded /24)

A’ as CIDR blo¢ks (14 blocks)




Outer Erosion Example

127 .128

255

B(25)

C(/25)

B’ (eroded /25)

C’(/25, inversion)




Erosion Statistics

* 6,404 range erosions detected:
— 71.0% (4,547) are inner erosions.

— 21.9% (1,400) are outer erosions.
— 93% (1,302) of these are at end of range.

— 7.1% (457) are “shifted” records (both outer and inner
erosions).

* 98.9% on /24 blocks and smaller

* Erosions not detected on blocks smaller than /28.

— Erosions on tiny blocks more likely to be false
positives.



Range “Inversion”

An inverted range is one which does not fit
cleanly into the tree.

May indicate errors in allocation ranges, or stale
allocation records

Difficult (if possible) to know which range in an
inversion is correct

Inversion correction is an area for future work.

— Current procedure arbitrarily drops the second range.



Normal Allocation Tree

127 .128

255

A(24)

B(25)

C(/25)

D(26)

E(/26)

F(26)

G(127)




Inverted Allocation Tree

.0 127 .128 .255
A(24)
B(/25) C25)
D(26) E(26+127)
G(27) F(26)




Inversion Statistics

® 745 range inversions detected:

— typographical errors

— e.g., 10.2.3.120 - 10.2.4.127 collides with 10.2.3.128-10.2.4.135;
both are probably /29s, though it’s not clear which /29s they
should be.

— simple overlap (possible stale records?)

— outer erosions on tiny blocks

— these are not fixed during erosion correction because of the
higher risk of false positives on smaller blocks.

* Counts by type not available because inversion
categorization is not yet automated.



Anomaly Logging

* Anomalies are logged during detection

— for tuning of anomaly detection and correction
techniques.

— for transformation into a useful format for automated
submission to the registries.



Future Work

Inversion categorization
Inversion correction

Use of context to minimize false erosion
detection

— Allows erosion correction on tiny blocks
Erosion detection on multiple-block ranges

Automated anomaly submission to RIRs



For More Information

* http://aircert.sourceforge.net/addrtree

20



Appendix: AddrTree workflow

atParseARIN.pl

atParseRIPE.pl

atStrip.pl

v

atDerode.pl

v

atSort.pl

v

atMerge.pl

v

atStack.pl

v

atDumpTDF.pl

atCIDR pl

|///

21



