Discussions around IPv6 security have centered on IPsec

- Though IPsec is mandatory in IPv6, the same issues with IPsec deployment remain from IPv4:
 - Configuration complexity
 - Key management
- Therefore, IPv6 will be deployed largely without cryptographic protections of any kind

Security in IPv6 is a much broader topic than just IPsec

- Even with IPsec, there are many threats which still remain issues in IP networking
Research

- Examine many common threats against IPv4 and determine how these threats might affect an IPv6 network
 - Some new threats specific to IPv6 are also considered
- Present candidate IPv6 network best practices to the Internet community for discussion and revision
 - Best practices are edge specific though many apply to SPs
- Version 1.0 of the research results can be found here:
IPv6 Attacks with Strong IPv4 Similarities (1/2)

- **Sniffing**
 - Without IPsec, IPv6 is no more or less likely to fall victim to a sniffing attack than IPv4

- **Application Layer Attacks**
 - Even with IPsec, the majority of vulnerabilities on the Internet today are at the application layer, something that IPsec will do nothing to prevent

- **Rogue Devices**
 - Rogue devices will be as easy to insert into an IPv6 network as in IPv4
IPv6 Attacks with Strong IPv4 Similarities (2/2)

- **Man-in-the-Middle Attacks (MITM)**
 - Without IPsec, any attacks utilizing MITM will have the same likelihood in IPv6 as in IPv4

- **Flooding**
 - Flooding attacks are identical between IPv4 and IPv6
Attacks with New Considerations

- **Reconnaissance**
 - Common subnet size of 2^{64} vs. 2^8 will complicate brute force network enumeration attempts (years vs. seconds)
 - Well known multicast addresses make it easier to find key systems within a network (FF05::2 is a site-local all routers address)

- **Unauthorized Access**
 - Many new filtering considerations with ICMP, Multicast, IPsec, and extension headers
Attacks with New Considerations (cont.)

- **Header Manipulation and Fragmentation**
 - Fragmentation is no longer done by intermediatry devices and MTU discovery is required
 - Various extension header options may complicate traditional fragmentation reassembly as done by network devices today

- **Layer 3-Layer 4 Spoofing**
 - Global aggregation of IPv6 addresses should enhance anti-spoof filtering
 - Transition methods (such as 6to4 relay routers) enable spoofing in the interim
Attacks with New Considerations (cont.)

- **ARP and DHCP Attacks**
 - IPv4 ARP attacks are replaced with IPv6 ND attacks with roughly the same issues.
 - IPv4 DHCP attacks are augmented by stateless-autoconfiguration attacks in addition to traditional DHCP issues for IPv6.
 - Secure Neighbor Discovery (SEND) is now a proposed standard.

- **Broadcast Amplification Attacks (smurf)**
 - There is no IPv6 equivalent of an IPv4 directed broadcast packet making traditional smurf attacks impossible.
 - Fraggle type attacks may still be feasible.
Attacks with New Considerations (cont.)

- **Routing Attacks**
 - IPv6 routing protocols are moving towards IPsec to secure transport as opposed to application specific protections (i.e. MD5)

- **Viruses and Worms**
 - Traditional viruses do not change
 - Worm / Viruses which use Internet scanning for propagation will need to adapt to the vastly increased size of IPv6 subnets
Attacks with New Considerations (cont.)

- Translation, Transition, and Tunneling Mechanisms
 - Various techniques in this space create new attack vectors around spoofing, redirecting, flooding, and encapsulating traffic
 - Lots of emphasis on not needing NAT, but organizations have already stated they will use NAT in their security designs.
Summary Findings

IPv6 makes some things better/worse/different, but no more or less secure

Better
- Automated scanning and worm propagation is harder due to huge subnets
- Link-local addressing can limit infrastructure attacks
- IPsec is a mandatory feature

Worse
- Increased complexity in addressing and configuration
- Lack of familiarity with IPv6 among operators
- Immaturity of software
- Vulnerabilities in transition techniques
Summary Findings (cont.)

- Most of the legacy issues with IPv4 security remain in IPv6
 - For example, ARP security issues in IPv4 are replaced with ND security issues in IPv6
 - SEND is now a proposed standard, but public key/private key crypto on every endpoint and certificate chains on every router. (needs more review)
Candidate Best Practices - sample

- Implement privacy extensions carefully - using them everywhere will complicate attack traceback and troubleshooting within your own organization.
- Selectively filter ICMPv6 - Our intent is to make people aware you will need to allow more ICMPv6 through your firewalls to implement IPv6 effectively.
- Ensure adequate IPv6 fragmentation reassembly capabilities - Make sure you filter IPv6 fragments on infrastructure devices sufficiently to handle obsfucation and DOS attack vectors.
Candidate Best Practices (cont.)

- Implement ingress filtering of packet with IPv6 multicast source addresses - SMURF is resolved in IPv6. Multicast filtering should mitigate potential fraggle-type attacks.
- Use IPv6 hop limits to protect network devices - Raise awareness of the GTSM in the enterprise.
Comments from IPv6/IPv4 Threat Comparison Review

- Font to small/lines to long
- ICMP filtering you should also allow more unreachables, such as port unreachables, or be prepared to sit through lengthy timeouts
- Too many implementations exist can’t test for fragments less than 1280. Consider around ~600 bytes for non-last fragments as there is no legitimate need to fragment packets that are already 1280 bytes or smaller
Moving Forward

- Moving forward with IPv6 security stack testing to attempt to find IPv6 implementation flaws prior to widespread deployment
- New Section on MIPv6 or possibly a small paper on MIPv6 security
- Other research areas are identified in the document
 - IPv6 Worm Propagation Research
 - Amplification Attack Research
 - Possible opportunities for NANOG input and collaborative work moving forward
Questions?