

Ben Abarbanel cbbrouting@boeing.com

NG 337-700

Global Network Mobility

NANOG 31

Implementing Global Network Mobility

- What is Connexion by Boeing?
- Summary of the problem
- Network and Service Challenges
- BGP as a mobility solution
- Questions/Comments

What is Connexion by Boeing?

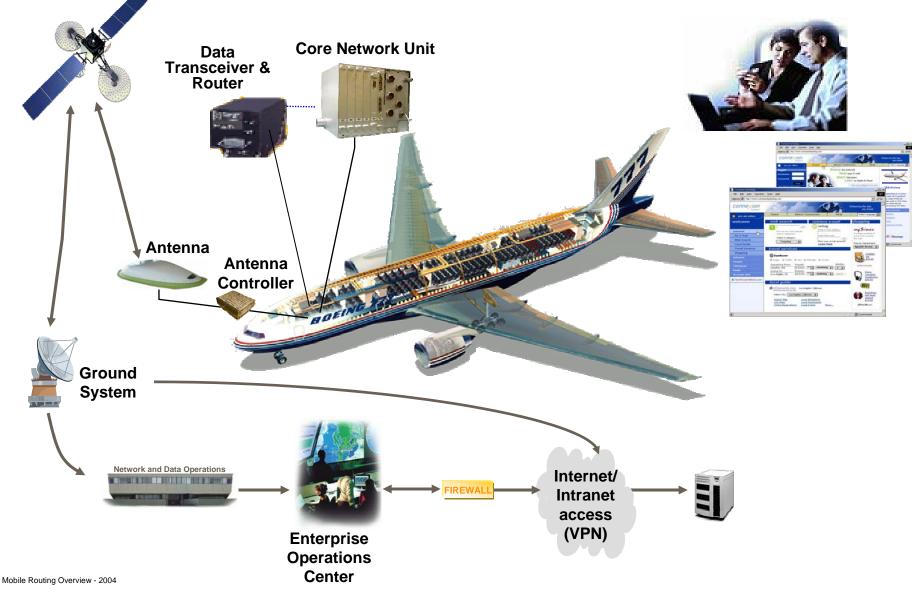
- Division of The Boeing Company
- Mobile Internet Access Provider
 - -commercial airlines
 - -maritime vessels
 - -and other mobile network platforms
- An 802.11b (WiFi) "hot spot" at 35,000 feet, moving 600 mph
- Our partners include Lufthansa, SAS, JAL, Korean Air, Singapore, & ANA

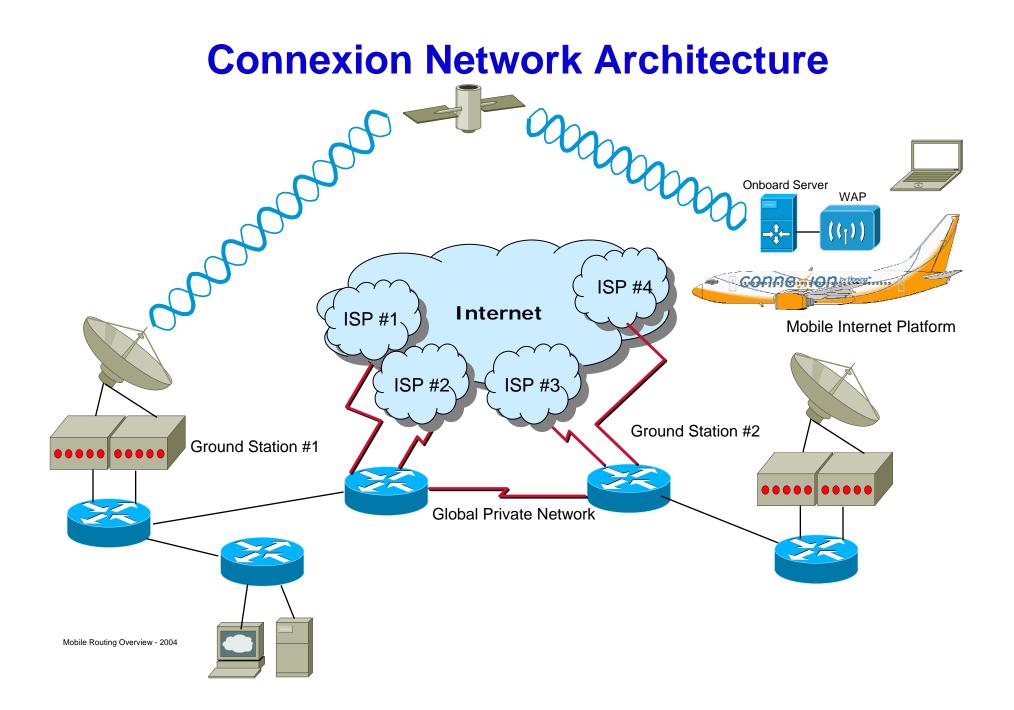
Summary of the Problem

- Traditional approaches
 - Target host mobility
 - Require mobility support in protocol stacks
 - Do not provide direct routing over a specific geographic area
- In contrast, Internet access on mobile network platforms require
 - Hosts remain stationary with regard to the network platform
 - Hosts may number in the hundreds
- Our solution: BGP
 - Uses the global Internet routing table
 - Selective announcements and withdrawals as platforms move

Both Passengers and Airlines Want 2-Way Onboard Communications Services...

Passengers:


- Home/Office-like experience
- Real-time, high speed connectivity
- Personal and corporate e-mail
- VPN Support
- Personalized content
- Seamless, secure access
- Connectivity throughout their travel experience



Airlines:

- Simple cabin design
- Reliable and robust system
- Lightweight and power efficient
- Real-time crew information services
- Enhanced operational efficiencies
- Medical assistance to flight crews

Connexion by Boeing On Board

90° maximum scan angle with 5° Angle of Attack margin. Coverage is notional.

Network & Service Challenges

- Our network challenges are unique in a number of areas
 - Mobility
 - Our platforms move, but not just a little...
 - They also move (600 mph) fast
 - Hardware
 - Deploying hardware on commercial aircraft
 - We can't just put a commercial router on a plane
 - Needs to meet FAA Requirements and Regulations
 - Quality of Service
 - Need to insure good performance over an expensive limited bandwidth pipe

Mobility Challenges The Latency Tax

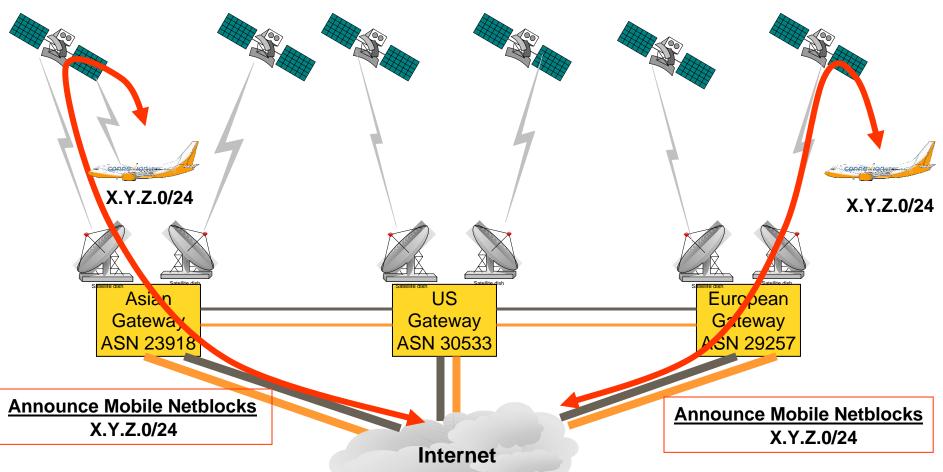
- Most Mobile IP protocols do not take into account the vast distances that a jet aircraft normally travels in a single day.
- Tunneling traffic from a home router adds large latencies when platforms are globally mobile and not always near the home router.
- Example: Latency with tunneled mobile IP aircraft homed in US currently over east-Asia to European website
 - 300ms Aircraft -> geo-synchronous satellite -> (ground) East Asia
 - 130ms East Asia -> North America
 - 70ms Across North America
 - 80ms North America (home agent) to Europe

- 580ms (1-Way) Total
- Takes almost 2 seconds to complete a 3-way TCP handshake!!!

Finding a better path through the ether...

- We wanted to find a better way to reduce latency, improve network reliability, and allow for global connectivity
 - Without backhauling or using traditional IP Mobility solutions involving Home/Foreign Agents
- The solution needed to allow seamless user connections throughout a flight...
- ...while leveraging existing routing technology to allow for easier implementation
- Traffic flows should follow geography!

Fighting Latency Back


- Instead of having mobile platforms homed to a specific region, release the traffic to the Internet at each satellite ground station.
- Example: Aircraft homed in US currently over east-Asia to European website:
 - 300ms Aircraft -> geo-synchronous satellite -> ground Europe
 - 30ms across Europe

- 330ms (1-Way) Total

- Takes 1 second to complete a 3-way TCP handshake
- 50% improvement over original 2 sec latency

Using BGP for mobile routing

Commercial passenger traffic is released at each Ground Station. Each Ground Station only advertises the IP's for the planes it is serving. When a plane leaves a region, that gateway stops advertising its IP's.

Challenges using BGP for Mobility

- /24 network prefix propagation
 - Concerns about the growing number of BGP routes in the global default free zone have caused some network providers to filter smaller route announcements
 - We currently advertise a /24 address block for each mobile platform
 - Testing of route propagation found that most providers will accept and propagate our /24 announcements
 - In the event that some providers don't accept our /24 announcements we are advertising a larger aggregate containing several/all mobile platforms
 - Advertising the larger aggregate provides:
 - A routing path to our direct providers that do support the /24 announcements
 - A routing path to our mobile platforms during route transition period if there is no /24 deployed

Challenges using BGP for Mobility - 2

- BGP convergence vs. handoff time between ground stations
 - Testing has shown the time required to achieve 2-way communications on a new satellite transponder is complementary to the time it takes BGP routes to converge on global Internet providers
- Provider concerns
 - Prefix churn
 - Route changes happen only a few times a day
 - During testing, our prefixes did not turn up on the RIPE RIS toptalkers.
 - Prefixes may have a "inconsistent" origin ASN
 - Currently originates at the active ground station
 - Changes when platform moves...
 - ... but does not originate from two places at once

Route Flapping and Dampening

- Route Flapping and Dampening
 - Will our routes be dampened by some providers?
 - Testing & research has shown that a single route update is unlikely to cause a route to be dampened.
 - We see some dampening after 5 flaps within a short period of time.
 - We always announce a stable aggregate (/19) "safety net" for our mobile platforms to ensure a stable path from the dark corners of the Internet.
 - Satellite handoff within a ground station: A ground station may serve more than one satellite transponder.
 - When a "hand off" occurs within a ground station we do not propagate a route withdrawal beyond our autonomous system.

Proposed Dynamic Prefix Management

- Dynamic Prefix Management
 - Our system allows for mobile platforms to "lease" address blocks for the duration of a "flight".
 - Similar to DHCP for hosts
 - Mobile platforms request address space when joining the network and continue to use address space until the "flight" ends
 - When usage completes, address space is placed in a "free" pool for reuse
- Regionalization of address space
 - Certain "flights" are served by a single ground station, address space can be assigned from a larger aggregate tied to that ground station
 - This can prevent the need to announce specific block for each flight

BGP as a Mobility Solution

- Does not require special IP stacks on customer hosts
- Does not require special routing onboard the mobile platform
- Does not require any special treatment of BGP attributes
- Does not require special operational support from peers
- Only suitable for /24 and bigger networks in our current network infrastructure

Questions and Comments

Thank you

http://www.connexionbyboeing.com