Can the End-to-End Principle Survive?

NANOG, Feb 2004, Miami Phil Karn karn@qualcomm.com

Disclaimer

This talk includes my personal opinions. I am not speaking for Qualcomm. Qualcomm may or may not agree with me. (But they should.)

Intro

- This talk is adapted and extended from my Mobicom '99 & AUUG 2003 talks
- Very little has changed
 - IPv6 and IPsec more widely deployed
 - worms, viruses, spam much worse

The End-to-End (E2E) Principle

- Seminal 1981 Saltzer, Reed & Clark paper: End-to-End Arguments in System Design
 - *IMHO*, the most important network paper ever written
- Many functions in a computer system are best done on an end-to-end basis
- A function can *sometimes* be justified at a lower layer as a performance enhancement
 - e.g., link level acks on a radio channel

Some Natural E2E Functions

• Reliability

- end-to-end check still required even if subnet provides per-hop acks
- . Security
 - end-to-end encryption protects the entire path
 - per-hop encryption can thwart traffic analysis
- Mobility
 - more flexible and efficient at application layer

Origins of the E2E Principle

- In the mid 1970s, the microprocessor created diseconomies of scale in computing that would clearly only grow
 - distributed became a buzzword
- The telephone system: unduly monolithic, complex, inflexible and expensive
 - precisely because it did too much; telcos still haven't learned from AIN fiasco
 - VoIP will be sweet revenge...someday...

E2E and the Internet

- The Internet architecture was originally conceived, designed, built, operated, tested and actually used *by the same people*, who were sponsored by other prospective end-users (the DoD)
 - "Every good work of software starts by scratching a developer's personal itch" (Eric S. Raymond)

Bogus Arguments Against E2E

• "How will we bill for our service?"

- e.g., in VoIP; persistent "free Internet" myth
- "No *real* person will *ever* want/need to ----
 - run a server
 - have a home LAN
 - use the Internet
 - own a computer
 - (your excuse here I've heard them all)

Some Real Threats to E2E

• IP address space exhaustion

- more specifically, kludges like NAT
- Pervasive host security problems
 - thanks, Microsoft!
 - firewalls: packet filters, proxies, gateways, spam & virus filters, etc

More Threats

- Misguided performance concerns
 - "ack-spoofing" gateways (e.g., TCP over sat)
 - "lightweight" protocols
 - e.g., WAP, Unwired Planet (R.I.P)
- New layers on existing E2E mechanisms
 - no true E2E check in relayed email; TCP becomes by-hop between relays

A More Ominous Threat to E2E

- Carriers creeping up the stack
 - controlling address and name spaces
 - Cable modem, DSL providers charging for extra or static IP addresses "because they can"
 - restricting/modifying content
 - Port blocking
 - inserting ads, censoring content, transparent proxies
- Raw pipes aren't glamorous enough
- US regulation of wire owners has failed

Even More Ominous Threats

- Legal persecution of P2P networks
 - The Internet was *designed* to be "P2P"!
- Spam, worms, viruses, DoS attacks
 - endemic and rapidly getting worse
- Used to justify all sorts of anti-E2E violence:
 - outbound port 25 blocking
 - MAPS DUL blocking
 - AUP server prohibitions
 - mandatory spam/virus filters

The Real Issue

Who's in charge here? The end-user or the carriers?

Defending E2E

- Tunneling (e.g., IPv6 6to4 and IPsec)
 - Encryption nicely thwarts content restrictions
- QoS support
 - cleaner way to differentiate service offerings
 - a rare low-level feature that *should* exist, but doesn't
- Open source software
 - powerful way to meet users' (vs vendors') needs

IPv6

- 6to4 is excellent for NAT avoidance
 - will become very popular when implemented in consumer routers
- Hosts will be dual stack (many already are)
 - Non-global IPv4 address behind NAT
 - common current practice
 - fine for existing web & email clients
 - Global IPv6 address in 6to4 block
 - ideal for new P2P applications, e.g., VoIP

IPv6, contd

- Biggest myth about IPv6: "We can't use it until our carriers support it".
- With 6to4 tunneling, you only need IPv6 support at the endpoints
 - and most already have it (XP, Linux, OS X)
- I actually like that my carriers don't do IPv6
 - when they do, they'll arbitrarily filter, redirect, block, charge, spindle and mutilate IPv6 as they now do IPv4

Will IPv6 succeed?

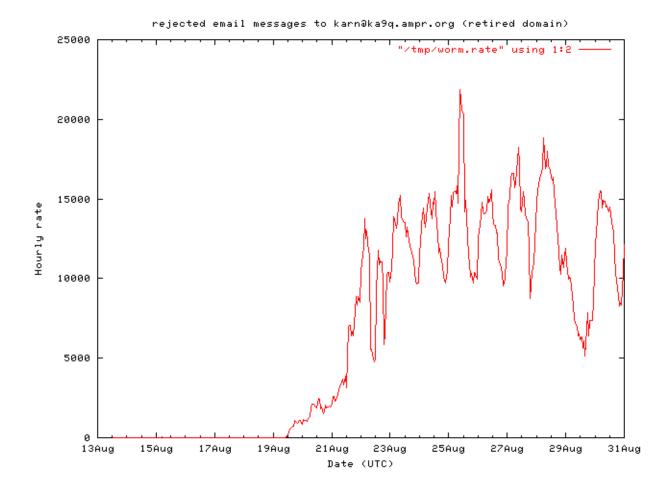
- Who will "own" the v6 address space?
 - Many complaints already about cost & difficulty of getting v6 address space
 - implicit /48 assignment big advantage of 6to4
- Requires host, app and router upgrades
 - already in most host OSes
 - older applications don't have to have it
 - not yet in consumer-grade gateways
- Will worsen host security problems

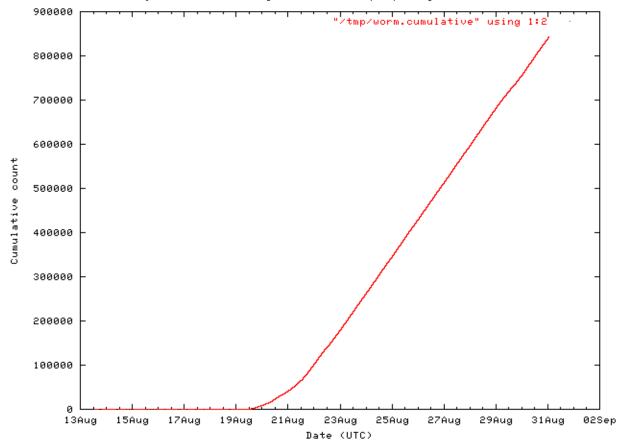
Security Threats

- Many distinct security problems, e.g.,
 - Spam
 - Worms/viruses
 - DoS attacks
- Different resources being attacked
 - User eyeballs
 - Host resources
 - Network resources
- IMHO, Biggest single threat to E2E

Preserving E2E Against Security Threats

- Security Placement Principle: Place security mechanisms as close as possible to the resources being protected
- Ergo,
 - *must* distinguish between host and network attacks
 - host attacks best prevented by host mechanisms
 - with net mechanisms as performance enhancement
 - net attacks only prevented by net mechanisms


Security Philosophy


- Humans are more valuable than machines
 - Primary goal of spam blocking is to save *my time; the network is secondary*
- End users *must* retain ultimate control
 - any filtering functions performed by ISPs as performance enhancement *must* be under enduser control

Our #1 Security Problem: Microsoft!

- Two kinds of worms & viruses endemic:
 - trojans (e.g., SoBig.F)
 - bug exploiters (e.g., Slammer, Blaster)
- Primary damage to infected hosts, but ubiquity clogs network
- Despite many promises, problem worsening rapidly

Fun & Games with SoBig.F

rejected email messages to karn@ka9q.ampr.org (retired domain)

Example: DoS in Cellular Networks

• We'd like to give every phone a global IPv6 address and make it a server (VoIP, text etc)

– any host anywhere can send it packets

- Wireless is inherently slower than wired
- Denial-of-service attacks would be too easy
 - already pandemic in the wired Internet
 - excess capacity keeps them from being more destructive than they already are

Blocking DoS Attacks

- Filters in the phone won't work
 - the damage is to the wireless link, not the phone
- I.e., filters have to be in the network
- This problem isn't unique to wireless hosts
 - they are simply the most vulnerable
 - we need a general solution for all hosts if IPv6 is to restore the end-to-end model

Blocking Spam

- Special class of denial-of-service attack
 - attacked resource is user's eyes, not his link
 - already a serious problem with SMS in some areas
- Many ISP spam "solutions" are much worse than the disease (*e.g. dialup IP blocking*)
- Best solution so far: Bayesian analysis, performed upstream under user control

Conclusions

- Secure host software is mandatory
 - but Microsoft is highly problematic
- Will still need filtering to protect the net
- Challenge is to preserve the E2E model
- Needed: standard filtering mechanisms under end-user control

References

- Saltzer, Reed, Clark: *End to End Arguments in System Design*
 - http://people.qualcomm.com/karn/library.html
- Raymond, The Cathedral and the Bazaar
 - http://www.tuxedo.org/~esr/writings/cathedralbazaar/
- Karn, Why I Hate Microsoft: Part 1, Worms and Viruses
 - http://www.ka9q.net/worm

More References

 Andrew Odlyzko, "Content is not King", http://www.firstmonday.dk/issues/issue6_2/o dlyzko/