A Decade of Technology Pitfalls and Successes

<dino@procket.com>

Define Decade

- I will take you back 0x10 years
- Too much good foundational stuff in 1985-1990 to not talk about
- IMHO
 - What failed
 - What succeeded
 - Where did the ideas really come from

Agenda

- What's the communication model?
 - Layer 2 or Layer 3
 - Datagrams or Connections
 - Point-to-point, Multi-point, Any-point, Broadcast
- What network layer do we use?
 - IP, XNS, DECnet, SNA, OSI, Appletalk, IPX, IPv6
- What routing protocols do we use?
 - RIP, GGP, EGP, Hello, [E]IGRP, OSPF, IS-IS, NLSP, BGP
- What management/security protocols do we use?
 - SGMP, CMIP, CMOT, SNMP, CLI, XML
 - IPsec, SSL, SSH

Nanog30 - Miami

- Layer-2 or Layer-3
 - Mid-80s Transparent Bridging (TB) and Source Route Bridging (SRB) were popular
 - IP, XNS, and Appletalk were layer-3 competitors (all the way up to the app level)
 - DECnet Phase I V had been around and conversions were happening to Phase V
 - Novell IPX deployments increasing in "PC networks"
 - LANBridge 100 was the first "multi-port" bridge
 - IBM came to the scene with a 16mbps Token Ring Bridge (SRB)

- Layer-2 or Layer-3
 - DEC started doing 100mbps on the Gigaswitch (i.e. FDDI bridges)
 - Vitalink introduced non-LAN bridging by extending bridging to the WAN
 - Cascade built Frame Relay "Switches"
 - Fore built ATM "Switches"
 - These bridges could support all the "host-based" protocol packet forwarding
 - These bridges "tried" to support unlike media
 - Protocols like LAT and Netbios don't have a network layer

Started seeing merchandise like:

- Routers did exist for a long time
 - BBN built "packet-switches" for the Military and National Labs (ARPAnet and MI Lnet)
 - DEC build DECnet routers for the enterprise
 - Apple built routers for the plug-and-play workgroups
 - Novell/3Com build devices for "PC-LANs" for brokerage/accounting firms
 - Proteon and cisco starting to build "multi-protocol" routers for research and education
 - Proteon and cisco built both SRB and TB bridge functionality too to enter lucrative enterprise market

- Routers were better than Bridges:
 - Routers dealt with unlike media easier
 - Routers dealt with arbitrary topologies better
 - Routers dealt with addressing that had opportunity for hierarchy and therefore scalability
 - Routers dealt with inter-organizational connectivity better

- Bridges were better than Routers:
 - They could be built cheaper, price-per-port was order of magnitude cheaper
 - They *had* little configuration to make work
 - Mind-set was you had to be an expert to manage routers
 - Lot more bridge vendors than router vendors, price is driven down even further

- Battle for the LAN data-link
 - Ethernet versus Token Ring
- Battle for the high-speed WAN data-link
 - ATM versus POS
- What device type to use
 - Routers or Bridges

- Battle of Ethernet versus Token Ring existed for nearly 10 years
 - IBM was really the only proponent for Token Ring
 - Workstation vendors and PC vendors endorsed Ethernet
 - Who won? Ethernet due to simplicity and huge commercial support

- Battle of ATM versus POS existed for ~5 years
 - Promise of ATM to the desktop was too ambitious
 - Building a routing architecture at layer-2 could be done, but we already had one at layer-3
 - ATM as a core fabric to connect routers was useful (DS-3 running out of steam), OC-3/OC-12 only on ATM switches
 - POS (IP over SONET) allowed high-speed connections between routers, no topology abstraction in the core fabric (routers were the core)
 - Who won? POS due to simplicity and router support (now more chip vendors support POS than ATM), today we do IP and IPv6 on 10gbps WANs

- What device type to use, Routers or Bridges?
 - "Bridge where you can, route where you must"
 - Bridges are good for workgroups, don't go with too many bridge-hops (you'll get into trouble)
 - Bridges are good as a core fabric to connect LAN-based Routers, don't go geographical (you'll get into trouble)
 - Don't forget your broadcast and multicast applications, that is what protocols you intend to run (you will unscale your bridges)
 - I'd say "Bridge to make localized subnets, route everywhere else"
 - Who won? Routers will never lose, Bridges are a commercial success due to Ethernet ubiquity (used in local-area only)

Nanog30 - Miami

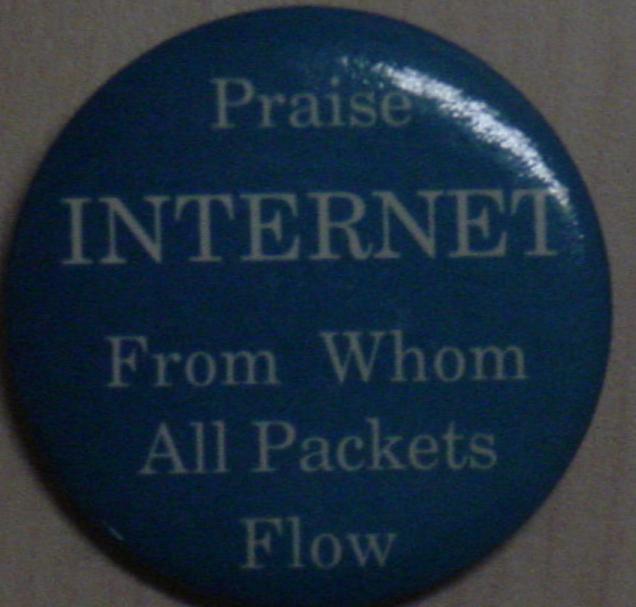
- Datagrams or Connections
 - X.25, SNA, ATM, and Frame Relay used connections below the network-layer
 - IP, XNS, IPX Appletalk, DECnet used connections at the transport-layer but datagrams at the network layer
 - OSI wanted to support both models
 - CLNS and CONS
 - CONS even over simple media like Ethernet

- IEEE 802.2

Connections

- SNA was proprietary so one company could control the technology (this made it successful)
- X.25 worked because of like minds (pre-EU or CCLTT)
 - Telenet, Tymnet, Transpac, Datapac
- ATM/Frame Relay like minds where circuitswitch oriented (all signals/data over one technology over the entire earth)
- Connections could run over a datagram network
- Harder to have datagrams over a connection oriented network

Connections


- Hard to have connections on each media type known to man
 - Microwave links, now WiFi
- Hard to have QOS on each media type known to man
- Reliable connections are not needed on reliable links
- Most data-link connection protocols run in datagram mode (HDLC, 802.2, PPP)
- Most of the dynamic connection-mode protocols (Frame Relay and ATM) run in PVC mode

Datagrams

- Most of the host based vendor protocols are datagrams at the network layer
 - IPX, Appletalk, XNS, DECnet, CLNS, IP, IPv6
- Ubiquity of Ethernet and other datagram oriented data-links allowed datagram network layers to run effortlessly over links
- Datagrams in packet-switches require less state
- Datagrams allow fast rerouting with less overhead

- Datagrams versus Connections
 - Who won?

Datagrams!

- Communication modes
 - 2-party communication (point-to-point)
 - Multi-party communication (multi-point)
 - Closest-party communication (any-point)
 - All-party communication (all-point/broadcast)
 - Within a reasonable scope

- Communication Modes
 - Layer-2 datagram protocols could do unicast, multicast, anycast, broadcast
 - LANs
 - Layer-2 connection protocols could only really do unicast and multicast
 - ATM PVCs, Frame Relay (didn't do multicast well)
 - SMDS and X.25 could only do unicast
 - Multi-mode Layer-3 protocol would have to simulate equivalent Layer-2 services
 - IP replication over Frame Relay (wastes bandwidth)
 - Only network layer protocols could support multi-hop, scalable, metric-based modes

- Communication modes
 - XNS
 - Point-to-point and link-local broadcast
 - DECnet
 - Point-to-point, link-local multicast, link-local broadcast
 - Appletalk
 - Point-to-point, broadcast, and later multicast
 - IP
 - Point-to-point, multicast, anycast, directed and limited broadcast
 - IPv6
 - Point-to-point, multicast, anycast

- For mode support, who won?
 - Appletalk really had the applications to back the multicast/broadcast modes
 - IP has the scalability and the more robust network layer support, mostly because it was the interoperable network layer of choice
 - All other variants failed
 - I Pv6 desires to give the promise I Pv4 gave


- Why so many network layer protocols
 - No rapidly defined standards
 - IBM around for a long time and focused on reliable financial apps, hence SNA
 - Xerox came out with XNS but no real protocol other than SPP for transport
 - Novell needed a PC-workgroup solution so did a XNS copy-and-modify to yield IPX
 - DEC hit scientific community and really had the vision for datagram/dynamic routing protocols
 - Apple wanted devices to simply plug-and-play

TCP/IP

- Military and Research Lab community used TCP/IP
- UNIXes left XNS and went with TCP/IP
- Sun, SGI, and other newer WS vendors commercially supported TCP/IP
- Independents had TCP/IP implementations on PCs and VAXes
- Router vendors like BBN, ACC, Bridge, Proteon, and cisco were early pioneers of network/routing layer protocols
- DARPA and NSF dubbed IP defacto standard for building Internet infrastructure
- When Microsoft jumped on the bandwagon there was no turning back – intro of Windows 95

- What was wrong with TCP/IP?
 - But TCP/IP was not an international standard
 - I SO was building full-blown standards from layer-1 to layer-7 (i.e. OSI reference model)
 - US Government proposed GOSIP mandate for new contracts
 - DEC, a huge supporter of OSI, released DECNET Phase V, a complete OSI stack implementation
 - What about Internet applications, could they run over OSI?
 - Bottom line: took too long for vendors to field OSI products, the LETF was winning the "working standards" race
 - IETF motto: "rough consensus and working code"

- Who won?
 - Should be obvious to everyone in this room

Sponsored by Excelan

- Mid-90s problem
 - I Pv4 has 32-bit addresses, running out
 - Too hard to reassign addresses to routing domains
 - Routing domain multi-homing problem is exploding the routing table size
 - "The sky is falling"

- How to solve the IPv4 problem
 - LNAT, IPAE
 - OSI
 - SIP, PIP, CATNIP, TUBA, NIMROD, BigTen
- Who won?
- SIP had 8-byte addresses
 - Compromise by committee to make 16-byte addresses
 - IP version 6 was born

More merchandise became available:

- What's good about IPv6
 - No adhoc standards, good documentation for all protocols day-1
 - We will never ever run out of addresses in anyone's lifetime (keep doubling 4 billion 96 times) ;-)
 - Designed by both host and router vendors together (and you gotta love the header format)
 - Like the IETF way, build standards through implementation

- What's bad about IPv6
 - Did we solve enough problems in this shot
 - Routing architecture is a copy from IPv4
 - Too many transition mechanisms documented (no one learned from the DECnet IV to V conversion)
 - Design by committee made protocols more complicated than necessary (i.e. ND is not simple ARP)

- Summary
 - I Pv4 is here to stay for a while
 - I Pv6 is gaining momentum and there is a swell of infrastructure support
 - You can certainly buy I Pv6
 - We finally have seen the end of proprietary network layer protocols

What routing protocol do we use?

- What about the plethora of routing protocols?
- Did we have too many?
- Did we learn from our past sins?
- The industry is converging
 - We have less protocols now then ever

What routing protocol do we use?

- Chronology, start with RIP
 - Everyone had RIP
 - XNS, IPX, Appletalk, IP, and yes even for IPv6
 - Basic understanding of DV concepts
 - You have direct routes, you pass them on, your neighbor continues to pass them on
 - Metrics were weak
 - DV lends itself well to route filtering
 - DV lends itself to rerouting instability

- Chronology, GGP and EGP
 - Milnet and Arpanet connected mostly single LAN domains together
 - Inter-AS protocol required (was simply a up/down detection protocol)
 - The advent of the "I GP/EGP" split
 - No metrics in these protocols
 - Needed AS-loop detection mechanism

- For a long time
 - RIP/EGP was your multi-vendor interoperable routing protocol suite
 - cisco introduced I GRP due to weak RIP metric
 - Solved counting to infinity, hold down, and split horizon sooner than public domain RIP implementations
 - Vectored metric
 - gated happened
 - RIP, Hello (delay metric), and EGP
 - This was the state of routing protocols from '85-'91

- Under development
 - Proteon working on OSPFIGP
 - Pronounced 'OS P FIG P'
 - Brought 'OSPF' to IETF
 - IETF working on BGP
 - DEC using IS-IS in DECnet IV and V networks
 - ANSI X3S3.3 standardizing IS-IS for ISO standard
 - At this point, too many protocols, interworking issues came up
 - Networks were melting down from route redistribution errors

- War between IS-IS and OSPF
 - Integrated versus Ships-in-the-Night routing
 - OSPF worked only for IPv4
 - I S-I S carried I Pv4, NSAP, and Phase I V addresses
 - ISPs felt too much machinery in OSPF, went to IS-IS
 - Enterprise liked the bells-and-whistles of OSPF, stayed away from IS-IS
 - CPU consumption for link-state, forced people to stay with I GRP

PROVEN EROPERABIL

- BGP was progressing in LETF
 - cisco lead in BGP, no real interoperability other than with the public domain BGP
 - Proteon lead in OSPF, lots of interoperability support by new router vendors
 - Interworking issues with OSPF/BGP
 - Should you redistribute BGP into OSPF
 - How could you use OSPF tag to carry BGP info
 - Quickly learned to carry BGP info in iBGP
- I DRP was progressing in I SO
 - BGP3 didn't carry subnet masks
 - Use I DRP for IP (and CLNS) and don't rev BGP

- BGP4 deployment
 - Take a couple of implementations and a dozen motivated individuals in the right organizations
 - You get a turn-key BGP3 to BGP4 conversion
 - Amazing how this ran so smoothly
 - The Internet now had CIDR based routing
 - Sorry IP doesn't get credit for this
 - See Ross Callon's NSAP longest match routing spec

- Mid-90s, router vendors seek alternatives for their customers
 - cisco comes out with EIGRP for IGRP-deployed customers
 - Novell does a copy-and-modify of IS-IS to yield NLSP
 - OSPF increases deployment in multi-vendor networks
 - IS-IS increases deployment in ISP backbone networks

- Late 90s to present
 - More I GRP networks go to OSPF or IS-IS
 - I Pv6 gains popularity
 - I S-I S becomes integrated again and carries I Pv4 and I Pv6 routes
 - BGP4+ carries I Pv4 unicast/multicast prefixes as well as I Pv6 unicast/multicast prefixes
 - OSPFv3 used for IPv6 while OSPFv2 used for IPv4 in SIN mode
 - People continue to put more baggage into BGP4

- No mention of LDP and RSVP-TE?
 - They are not routing protocols
 - They are label binding protocols
 - Nothing more needs to be said

Summary

- BGP is here to stay --- it is the hammer for every nail
- Both OSPF and IS-IS will continue to support the base IGP infrastructure
- Proprietary routing protocols nearly gone
- No surprise to anyone in this room

- Just a brief word about network management protocols
 - There were too many
 - That has been fixed for a long time
 - MIBs are good, you gotta have them
 - Can MI Bs alone completely manage a router
 - No, but we can name a lot of objects
 - Is good for proprietary extensions

- How did we start
 - HEMS and SGMP
 - Proteon had first SGMP implementation
 - SGMP was the basis for ubiquitous SNMP
 - OSI had CMIP, more functionality than SNMP
 - War between CMOT (CMIP over TCP) or SNMP
 - OSI camp lost again
 - Too many vendors went the SNMP path

- General rule of thumb
 - SNMP used for monitoring
 - Standard, you can count on
 - For your GUI interfaces
 - XML for standard polling and customizing output formats
 - Scripting in the hands of the customer and not the vendor
 - CLI to debug hard problems (or anything else)
 - Development engineers have their hidden commands
 - CLI output format different based on protocol implementation choices

- What the industry has said
 - People are used to the industry standard CLI
 - cisco I OS CLI
 - For reduced training cost to operators
 - People like the consistency of a structured CLI
 - Juniper JUNOS CLI
 - gated syntax
 - For network engineers to program/customize

What security do we use?

- Just a final word about security protocols
 - I Psec is great!
 - Why is it not implemented everywhere?
 - And since it is not, we have application level solutions (i.e. SSL and SSH)
 - Why don't vendors default it to on?
 - If there was a key distribution problem why don't I see it with SSL and SSH
 - If we want a secure network, let's stop the lip service and deploy end-to-end I Psec ASAP
 - No interim or transition mechanisms please

Final Summary - The Internet Way -

- Open source
- Public domain
- Learning through experiment and evolution
- Can't live without it
- Thank you Al Gore Vint Cerf ;-)

