
A Systematic Approach to 
BGP Configuration Checking

Nick Feamster and Hari Balakrishnan
M.I.T. Computer Science and Artificial Intelligence Laboratory

{feamster,hari}@lcs.mit.edu

http://nms.lcs.mit.edu/bgp/



 BGP Configuration Determines Its Behavior
  

     Route injection, redistribution, aggregation
     Import and export route maps
     Access control lists, filtering
     AS Path prepending
     Communities
     Next-hop settings
     Route flap damping
     Timer settings
 

 BGP is a distributed program.
 We need practical verification techniques.

 
 



 Today: Stimulus-response Reasoning
  

            "What happens if I tweak this import policy?"
            "Let’s just readjust this IGP weight..."
            "New customer attachment point? Some cut-and-paste will fix that!"            

      Some time later, some "strange behavior" appears.
      (OOPS!  Revert.)      

     Operators have a terrible "programming environment".
            Configuration is ad hoc and painful.
            Wastes operator time. 
            Suboptimal performance, angry customers.       

     Online error checking is insufficient.
            Won’t catch misconfigured filters, redundant route reflectors, etc.      



      

 Verifying Configuration "Correctness"
  

     Why? Unlike most protocols, BGP’s correctness 
depends heavily on how it is configured.

 

     How? Systematically, according to properties:
            enumerate aspects of configuration that affect it
            test that those aspects conform to certain rules 

     Limitations? Some aspects involve cooperation across 
ASes; not really possible today.

 

 That’s OK, plenty goes wrong inside of one AS, too.
 
 



      

 Higher Level Reasoning About Configuration 
  
 

     Verify the behavior of a particular configuration.
            Check "correctness properties".
            Check that the configuration conforms to intended behavior. 

 More than a band-aid fix.  
 Useful for any router configuration language. 

     Specify configuration based on intended behavior.
            Configuring low-level mechanisms is error-prone.
            Specifying high-level intended behavior makes sense. 
 
 



      

 Example: Information-flow Control
  

 Simple rule: don’t advertise routes
  from one peer to other peers.

 

���� � � �� � �

� ��� � 	
 � � � � 


 
 
 



      

 Today: Specifying Policy with Mechanism
 

 

���� � � �� � �

� ��� � 	
 � � � � 


 

    Bad: Import/export route maps, ACLs, communities, etc. 
          neighbor 10.0.0.1 route-map IMPORT-A in
          neighbor 10.0.0.1 route-map EXPORT-A out
          neighbor 192.168.0.1 route-map IMPORT-C in
          neighbor 192.168.0.1 route-map EXPORT-C out          ...
          ip community-list 1 permit 0:1000          ...
          route-map IMPORT-C permit 10
            set community 0:1000
          !          ...
          route-map EXPORT-A permit 10
            match community 1
          !          
          
          
          



          

 Other Information-flow Control Examples
  

    Goal: Verify that route advertisements conform to
               intended information-flow policy. 

     Partial peering
 

     Controlling prefix propagation
            Bogons
            "No Export" prefixes 

     Conditional advertisements 

     Signalling (e.g., with communities)
 
 
 
 
 
 



          

 Higher Level Reasoning about "Correctness"
 

     Validity: Does it advertise invalid routes? 
            Bogus route injection, persistent forwarding loops, etc. 

     Visibility: Does every valid path have a route? 
            Session resets, missing sessions, damped routes, etc. 

     Safety: Will it converge to a unique, stable answer? 
            Policy-induced oscillation 

     Determinism: Answer depend on orderings, etc.? 
            Irrelevant route alternatives can affect outcomes. 

     Information-flow control: Expose information? 
            Accidental route leaks to neighbors, etc. 
 
 
 
 
 



          

          

          

          

          We are developing a tool that checks 

          correctness constraints for configuration.
          

          RoLex (Routing Lexer)
          



          

 RoLex: Configuration Verification Suite
  

     Two distinct parts that parse IOS configs.
            Pattern-based constraint checker
            Control flow analyzer 

 

Pattern−Based
Constraint Checker

Control Flow
Analyzer

Cisco
IOS

Property
Violations

High−level
Network Summary

(Web−based interface)

Rules

 

 Send requests for more tools, features, etc!
 http://nms.lcs.mit.edu/bgp/rolex/ 

 



          

 Pattern-Based Rule Checker: Usage
  
 

     Easy: simple as running a script
          cd rolex/perl/src/pattern-rules/tests/
          ./nh-reachability-test.pl (or whatever)
          

     Chomps on all configs at once.
          

     Running time depends on network size, test, etc.
          

     Network-wide checking is built-in.
          



          

 Pattern-Based Rule Checker: Sample Output
 

     Validity Test
          found ebgp on atlga-gw1 (AS 65000)
          ebgp: no next-hop-self atlga-gw1 (10.215.0.113)
          ERROR: 10.215.0.113 not in iBGP/IGP (eBGP session)
          ...          

     Visibility Test
          ERROR: no _r2 with loopback 10.0.1.65 (from bosma-gw)
          ERROR: no _r2 with loopback 10.123.197.110 (from bosma-rr1)
          ERROR: no _r2 with loopback 10.123.197.110 (from bosma-rr2)
          ...
          ERROR: laxca-gw has NO "router bgp" statement
          ...          

     Determinism Test
          atlga-rr2: deterministic-med OK
          ERROR: atlga-gw2 has no deterministic-med
          ERROR: attga-gw3 has no deterministic-med
          ...
          wswdc-rr1: compare-routerid OK
          ERROR: wswdc-gw2 has no compare-routerid statement
          

          

          

          



          

 Under the Hood: A Pattern-Based RoLex Rule 

 

Start

a1==a2 or a2 a sub-AS?

r1: router bgp a1 {neighbor n2 remote-as a2}

eBGP session to n2 (AS a2)

No

continue with inter-AS test cases

Yes

Next-hop reachability OK

r1: router bgp a1 {neighbor n2 next-hop-self}

Looking for n2 in IGP

_END_

ERROR: next-hop not in AS

_END_

n2 in AS at r2

r2: interface { ip address n2 }

router ospf { network [prefix containing n2] }

ERROR: next-hop in AS, but not in IGP

_END_

 
 
 



          

 Under the Hood: A Pattern-Based RoLex Rule 

 

Start

a1==a2 or a2 a sub-AS?

r1: router bgp a1 {neighbor n2 remote-as a2}

eBGP session to n2 (AS a2)

No

continue with inter-AS test cases

Yes

Next-hop reachability OK

r1: router bgp a1 {neighbor n2 next-hop-self}

Looking for n2 in IGP

_END_

ERROR: next-hop not in AS

_END_

n2 in AS at r2

r2: interface { ip address n2 }

router ospf { network [prefix containing n2] }

ERROR: next-hop in AS, but not in IGP

_END_

 
 



          

 Writing a Pattern-Based RoLex Rule
  

     RoLex provides finite-state machinery
            Rules are simple: 41 lines of code for next-hop test 

     Rules specify "nodes" and "transitions".
 

          $no_nh_self_ebgp = sub {
              print STDERR 
                  $fsm->substitute_def_bindings("ebgp: no next-hop-self _r1 (_n2)\n");
              $fsm->transition(’_r1: router bgp _a1 [[ network _n3 mask _m3 
                                <contains(_n3/_m3, _n2)>]]’,1)->($OK);
              &$ERROR(’_n2 not in iBGP/IGP (eBGP session)’);
          };          

     Figuring out "boundary" between users, developers, etc.
          
          
          
          
          
          
          



          

 Control Flow Analyzer
  

     Some constraints (e.g., import/export policies) best 
expressed in terms of higher-level semantics. 

 

     Abstracts mechanisms, gives operators a higher-level 
view of network configuration.

 

 

Pattern−Based
Constraint Checker

Cisco
IOS

Property
Violations

Network Summary
(Web−based interface)

Rules

Control Flow
Analyzer

High−level

 
 
 



          

 Control Flow Analyzer: Features
  

     Graph the network at router-level, labelling route maps 
on edges.

 

     Database-backed Web interface.  
            View the number of BGP sessions to each AS.
            View sessions, import and export route maps:
                        by router
                        associated with a particular remote AS
            Easily compare policies across routers. 

     Policies are "normalized" according to what they do, not 
what they are called.

 



          

 Control Flow Analyzer: Network Graph
  

 ./cflow.pl --graph=dot,ebgp 

 
 

     Visualization of import and export policies.
     Routers are nodes, edges are BGP sessions, labels are 

policies.

     Useful for small networks, sections of larger networks.
 



          

 Control Flow Analyzer: View by Router
  

 
 
 

     View all BGP sessions on a particular router.
     Route maps normalized by mechanism.
 
 



          

 Control Flow Analyzer: Sessions per AS
  

 
 

     Network-wide view of eBGP and iBGP sessions. 

     Can then "drill down" on sessions to a particular AS.
 



          

 Control Flow Analyzer: Sessions per AS
  

 
 

     Network-wide view of eBGP and iBGP sessions. 

     Can then "drill down" on sessions to a particular AS.
 
 



          

 Control Flow Analyzer: View By Neighbor AS
  

 
 

     Network-wide view of import/export policies to an AS.
     Easy to see when differences exist.
 



          

 Control Flow Analyzer: View By Neighbor AS
  

 
 

     Network-wide view of import/export policies to an AS.
     Easy to see when differences exist.
 
 



          

 Control Flow Analyzer: Route Map Diffs 
  

 
 
 



          

 RoLex: Configuration Verification Suite
  

     Two distinct tools that parse IOS configs.
            Pattern-based constraint checker
            Control flow analyzer 

 

Pattern−Based
Constraint Checker

Control Flow
Analyzer

Cisco
IOS

Property
Violations

High−level
Network Summary

(Web−based interface)

Rules

 
 



          

 RoLex: Configuration Verification Suite
  

     Future work: Check high-level properties.
            Operator inputs high-level specification
            High-level network properties checked against constraints 

 

Property
Violations

Pattern−Based
Constraint Checker

Control Flow
Analyzer

Cisco
IOS

High−level
Network Summary

(Web−based interface)

Rules

Property
High−level

Specification

Control Flow
Constraint Checker

Violations
Property

 
 



          

 Today: Implementing Policy with Mechanism
 

 

���� � � �� � �

� ��� � 	
 � � � � 


 

    Bad: Import/export route maps, ACLs, communities, etc. 
          neighbor 10.0.0.1 route-map IMPORT-A in
          neighbor 10.0.0.1 route-map EXPORT-A out
          neighbor 192.168.0.1 route-map IMPORT-C in
          neighbor 192.168.0.1 route-map EXPORT-C out          ...
          ip community-list 1 permit 0:1000          ...
          route-map IMPORT-C permit 10
            set community 0:1000
          !          ...
          route-map EXPORT-A permit 10
            match community 1
          !          
          
          



          

 Ideas for Specifying Information-flow Policy
 

 

���� � � �� � �

� ��� � 	
 � � � � 


 
 

    Better: Lattice model. 

 ��� ��� �

��� � � � ��� � �

 

 Key Challenge: Specification
 (future work) 



          

 Control Flow Analyzer: Summary
 

     Bird’s eye view of network: browsing policies.
     Good for spotting anomalies, etc.
     Easy to navigate.
 

    Other features:
     View all routers
     Restricted views
            only eBGP (or iBGP) sessions
            only import (or export) policies

     Group by common import/export policies
    Coming soon:
     Specific queries about routes.
     Verify against high-level policy specs (e.g., "lattice").
 
 
 
 



          

 Towards Intent-based Configuration
  

 Verification requires a specification of intent,
 which can inspire configuration language design. 

     How to specify the information flow lattice?
            Must be intuitive.
            Must express varying levels of detail (i.e., AS-level, session-level, 

prefix-level, etc.)

            Must express positive requirements, too. 

     Expressing intended behavior will improve routing.
            Verification: check existing configurations against intent.
            Synthesis: generate configurations according to intent. 



          

 Many Thanks
  

     Jennifer Rexford  

     Randy Bush
 
 



          

 Shameless Plea
  

 This tool will only be useful with operator input. 

     You need better configuration management tools.
     I need to graduate.  
 

 http://nms.lcs.mit.edu/bgp/rolex
 

     Download the tool, and test it on your configuration.
     Or...I’ll happily test it on your configurations (will write 

new tests, too).

     Send feedback, feature requests, etc.
 
 


