A Systematic Approach to
BGP Configuration Checking

Nick Feamster and Hari Balakrishnan
M.I1.T. Computer Science and Artificial Intelligence Laboratory

{feamster,hari}@Ics.mit.edu

http://nms.lcs.mit.edu/bgp/

BGP Configuration Determines Its Behavior

® Route Injection, redistribution, aggregation
® Import and export route maps

® Access control lists, filtering

® AS Path prepending

® Communities
® Next-hop settings

® Route flap damping
® Timer settings

BGP is a distributed program.
We need practical verification techniques.

Today: Stimulus-response Reasoning

"What happens if | tweak this import policy?"
"Let’s just readjust this IGP weight..."
"New customer attachment point? Some cut-and-paste will fix that!"

Some time later, some "strange behavior" appears.
(OOPS! Revert.)

® Operators have a terrible "programming environment".

» Configuration is ad hoc and painful.
»\Wastes operator time.
» Suboptimal performance, angry customers.

® Online error checking is insufficient.
»\Won’t catch misconfigured filters, redundant route reflectors, etc.

Verifying Configuration "Correctness”

®\\/hy? Unlike most protocols, BGP’s correctness
depends heavily on how it is configured.

® How? Systematically, according to properties:

> enumerate aspects of configuration that affect it
> test that those aspects conform to certain rules

® | imitations? Some aspects involve cooperation across
ASes; not really possible today.

That’s OK, plenty goes wrong inside of one AS, too.

Higher Level Reasoning About Configuration

®\/erify the behavior of a particular configuration.

» Check "correctness properties".
» Check that the configuration conforms to intended behavior.

More than a band-aid fix.
Useful for any router configuration language.

® Specify configuration based on intended behavior.

» Configuring low-level mechanisms is error-prone.
» Specifying high-level intended behavior makes sense.

Example: Information-flow Control

Simple rule: don’t advertise routes
from one peer to other peers.

“Announce p”

Today: Specifying Policy with Mechanism

“Announce p”

Bad: Import/export route maps, ACLs, communities, etc.

nei ghbor 10.0.0.1 ro
nei ghbor 10.0.0.1 ro
nei ghbor 192.168.0.1
nei ghbor 192.168.0.1
| p comunity-list 1 perm
route-map | MPORT-C permt 1
| set community 0:1000

rout e-map EXPORT-A pernit 10
| mat ch community 1

ute-map | MPORT-A in

ut e-map EXPORT- A out
oute-map | MPORT-C I n
out

r

p EXPORT- C out

r e-
r e- na

e t 0:1000
0

Other Information-flow Control Examples

Goal: Verify that route advertisements conform to
iIntended information-flow policy.

® Partial peering

® Controlling prefix propagation
» Bogons
»"No Export" prefixes

® Conditional advertisements

® Signalling (e.g., with communities)

Higher Level Reasoning about "Correctness”

®\/alidity: Does it advertise invalid routes?
» Bogus route Injection, persistent forwarding loops, etc.

® \/isibility: Does every valid path have a route?
» Session resets, missing sessions, damped routes, etc.

® Safety: Will it converge to a unique, stable answer?
> Policy-induced oscillation

® Determinism: Answer depend on orderings, etc.?
> Irrelevant route alternatives can affect outcomes.

® Information-flow control: Expose information?
> Accidental route leaks to neighbors, etc.

We are developing a tool that checks
correctness constraints for configuration.

RoLex (Routing Lexer)

RolLex: Configuration Verification Suite

® Two distinct parts that parse 10S configs.

» Pattern-based constraint checker
> Control flow analyzer

Rules Pattern—Based Property
Constraint Checker Violations
Cisco
10S
Control Flow High—level
Analyzer Network Summary

(Web—-based interface)

Send requests for more tools, features, etc!
http://nms.lcs.mit.edu/bgp/rolex/

Pattern-Based Rule Checker: Usage

® Easy: simple as running a script

cd rolex/perl/src/pattern-rul es/tests/
./ nh-reachability-test.pl (orwhatever)

® Chomps on all configs at once.
® Running time depends on network size, test, etc.

® Network-wide checking is built-in.

Pattern-Based Rule Checker: Sample Output

® \/alidity Test

found ebgp on atlga-gwl (AS 65000)
ebgp: no next-hop-self atlga-gwl (10.215.0.113)
ERROR: 10.215.0.113 not in iBGP/ I GP (eBGP session)

® \/isibility Test
ERROR: no r2 with | oopback 10.0.1.65 (from bosna-gw
ERROR: no r2 with | oopback 10.123.197.110 (from bosma-rr1)
ERROR. no r2 wth | oopback 10.123.197.110 (from bosma-rr2)
ERROR: | axca-gw has NO "router bgp" statenent

® Determinism Test
atlga-rr2: determnistic-nmd K
ERROR atl| ga-gw2 has no determ nistic-ned
ERROR: attga-gw3 has no determ nistic-ned
wswdc-rr1: conpare-routerid OK
ERROR: wswdc-gw2 has no conpare-routerid statenent

Under the Hood: A Pattern-Based RoLex Rule

Start

rl: router bgp al { neighbor n2 remote-as a2}

al==a2 or a2 asub-AS-

No Yes

eBGP sessionto n2 (AS a2) continue with inter-A S test cases

END

Looking for n2in IGP

r1: router bgp al { neighbor n2 next-hop-self} | END _ r2: interface{ ip addressn2 }

ERROR: next-hop not in AS n2in ASat r2

mgwork [prefix containingn2] } | _END

Next-hop reachability OK ERROR: next-hop in AS, but not in IGP

Under the Hood: A Pattern-Based RoLex Rule

Start

rl: router bgp al { neighbor n2 remote-as a2}

al==a2 or a2 asub-AS"
Yes
eBGP sessionto n2 (AS a2)

continue with inter-AS test cases

P
Next-hop reachability OK ERROR: next-hop in AS, but not in IGP

Writing a Pattern-Based RolLex Rule

® RolLex provides finite-state machinery
> Rules are simple: 41 lines of code for next-hop test

® Rules specify "nodes" and "transitions".

$no_nh_sel f_ebgp = sub {
print STDERR
$f sm >substi tut e_def bi ndi ngs("ebgp: no next-hop-self rl (_n2)\n");
$fsm>transition(’ _rl: router bgp _al [[network n3 mask _nB
<contains(_n3/_nm3, n2)>]]",1)->($XK);
&ERROR(’ n2 not in iBGP/IGP (eBGP session)’);
b

® Figuring out "boundary" between users, developers, etc.

Control Flow Analyzer

® Some constraints (e.d., Iimport/export policies) best
expressed in terms of higher-level semantics.

® Abstracts mechanisms, gives operators a higher-level
view of network configuration.

Rules Pattern—Based Property
Constraint Checker Violations
Cisco
10S
Control Flow High—level
Analyzer Network Summary

(Web-based interface)

Control Flow Analyzer: Features

® Graph the network at router-level, labelling route maps
on edges.

® Database-backed Web interface.

> View the number of BGP sessions to each AS.
> View sessions, import and export route maps:

* by router
+ associated with a particular remote AS
» Easily compare policies across routers.

® Policies are "normalized"” according to what they do, not
what they are called.

Control Flow Analyzer: Network Graph

./ cflow. pl --graph=dot, ebgp

® \/isualization of import and export policies.

® Routers are nodes, edges are BGP sessions, labels are
policies.

® Useful for small networks, sections of larger networks.

Control Flow Analyzer: View by Router

Neighbor Routers for laxca-gwl

Router Neighbor Neighbor AS Import Route Map Export Route Map
lazca-gwl lazca-rrl losd 12 20
lazca-gwl lazca-rrd 1lo68 19 20

showr All Import =howr All Export

®\/iew all BGP sessions on a particular router.
® Route maps normalized by mechanism.

Control Flow Analyzer: Sessions per AS

Neighbor ASes
AS
208
701
1238
3358
7018

%
[y
@
El
&

B B L R L

® Network-wide view of eBGP and IBGP sessions.

® Can then "drill down" on sessions to a particular AS.

Control Flow Analyzer: Sessions per AS

Neighbor ASes
AS Sessions
209 5
701 5
1239 -3
2356 4
7018 4

® Network-wide view of eBGP and IBGP sessions.

® Can then "drill down" on sessions to a particular AS.

Control Flow Analyzer: View By Neighbor AS

Routers Peering with AS 1239

Router Neighhor Neighhor AS Import Route Map Export Route Ma;
atlga-gwl ehep AR1232 0 25 o) 26
cecil-gwl ehep AR1239 1 1238] 26
dlzte-gwrd gbegp AS1238 2 $238 114 26
laxca-gwl ebgp AS1238 3 LESe e 26

show Al Import chow All Export

® Network-wide view of import/export policies to an AS.
® Easy to see when differences exist.

Control Flow Analyzer: View By Neighbor AS

Routers Peering with A5 1239

Router MNeighhor Neighbor AS Import Route Map Export Rouwie Majg
atlga-gwrl ghegp ASI238 0 123% A3 26
cecil-gwl chgp AS1ASE 1 1239 22 26
dlzt- gl chep AS1238 2 1239 20
laxca-gwl ehgp AS1239 5 1232 25 28

show All [mport Show All Export

® Network-wide view of import/export policies to an AS.
® Easy to see when differences exist.

Control Flow Analyzer: Route Map Diffs

Route Map 25

| Faspi*a64511 8451[2-9] 1 (6451 64 5[2-2][0-9] ("4l 84[6-F][0-F][0-2] b ("651 65[0-F][0-2][0-2] h:((h%
7« metric =» 0> < ip => next-hop peer-address> < local-preference == 82> < cormmunity == 0:5000> }

Route Map 114

Tasp(te451l 6451[2-2] hiitad5] 64 5[2-F][0-F] ki(edl 64[6-F][0-2][0-F] (65| 65[0-2][0-F][0-2] h:h
{< mefric == 0= < ip => next-hop peer-address> < local-preference =» §2> < community == 0: 5000 +

Diff Output (zero-indexed)

- 0 {aspi64511 6451[2-9] bi:(*645] 645[2-9][0-9] b::("64] 64[6-9][0-9][0-9] %::{*65| 65[0-9][0-2][0-9] J:()
+ 0 {aspi64511 6451[2-9])i:i 6451 645[2-9][0-9] b1:("64| 64[6-9][0-9][0-9] %:{ 65| 65[0-9][0-2][0-8] b:({

RoLex: Configuration Verification Suite

® Two distinct tools that parse IOS configs.

» Pattern-based constraint checker
> Control flow analyzer

Rules

Cisco
10S

Pattern—-Based
Constraint Checker

Control Flow
Analyzer

=

Property
Violations

High-level
Network Summary
(Web-based interface)

RoLex: Configuration Verification Suite

® Future work: Check high-level properties.

» Operator inputs high-level specification

» High-level network properties checked against constraints

Rules

Cisco
10S

High—level
Property
Specification

Pattern—Based
Constraint Checker

Property
Violations

Control Flow
Analyzer

High-level
Network Summary
(Web—-based interface)

Control Flow
Constraint Checker

i

Property
Violations

Today: Implementing Policy with Mechanism

“Announce p”

Bad: Import/export route maps, ACLs, communities, etc.

nei ghbor 10.0.0.1 route-map | MPORT-A in

nei ghbor 10.0.0.1 route-map EXPORT- A out
nei ghbor 192.168.0.1 route-map | MPORT-C in
nei ghbor 192. 168. 0.1 route- map EXPORT- C out
I p community-list 1 permt 0:1000
route-map | MPORT-C permt 10

| set comunity 0:1000

rout e-map EXPORT-A permit 10
| mat ch community 1

ldeas for Specifying Information-flow Policy

“Announce p”

Better: Lattice model.

Peer A Peer C

-_

Public

Key Challenge: Specification

(future work)

Control Flow Analyzer: Summary

® Bird’s eye view of network: browsing policies.
® Good for spotting anomalies, etc.
® Easy to navigate.

Other features:
®\/iew all routers

® Restricted views
»only eBGP (or IBGP) sessions

»only import (or export) policies
® Group by common import/export policies
Coming soon:
® Specific queries about routes.

® \/erify against high-level policy specs (e.g., "lattice").

Towards Intent-based Configuration

Verification requires a specification of intent,
which can inspire configuration language deS|gn

® How to specify the information flow lattice?

> Must be intuitive.
» Must express varying levels of detall (i.e., AS-level, session-level,
prefix-level, etc.)

> Must express positive requirements, too.

® Expressing intended behavior will improve routing.

> Verification: check existing configurations against intent.
» Synthesis: generate configurations according to intent.

Many Thanks

® Jennifer Rexford

® Randy Bush

Shameless Plea

This tool will only be useful with operator input.

® You need better configuration management tools.
® | need to graduate.

http://nms.lcs.mit.edu/bgp/rolex

® Download the tool, and test it on your configuration.

® Or...I'll happily test it on your configurations (will write
new tests, t00).

® Send feedback, feature requests, etc.

