Troubleshooting BGP with Juniper Examples

Joseph M. Soricelli (jms@juniper.net)
NANOG 27, Phoenix, Arizona
Caveats and Assumptions

- The views presented here are those of the author and they do not necessarily represent the views of Juniper Networks.
- You will ask a question when you don’t understand!
- Other things:
 - Basic knowledge of BGP operation and attributes
 - Understanding of the JUNOS software CLI
 - Some screen captures were modified to fit on the slide
 - All configurations and captures were gathered using JUNOS software version 5.5R2.3
Troubleshooting Mentality

- Impossible to present an “official” troubleshooting methodology
 - Based on experiences
 - Take a logical approach (if there is time)
 - Shotgun troubleshooting?

- Use the tools available from the router
 - CLI `show commands`
 - Configuration parameters
 - Use of `traceoptions` files
Agenda: Troubleshooting BGP

- Originating Routes
 - Filtering Routes
 - AS Path
 - Prefixes
 - Communities
 - Reference Slides
Default Advertisement Rules

flight Advertise only the _**active**_ BGP routes to peers

user@HongKong> **show route protocol bgp**

inet.0: 43 destinations, 43 routes (43 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.168.24.0/24 *[BGP/170] 00:00:10, MED 20, localpref 100, from 192.168.24.1
 AS path: I
 > to 10.222.28.2 via fe-0/0/0.0
192.168.25.0/24 *[BGP/170] 00:00:10, MED 20, localpref 100, from 192.168.24.1
 AS path: I
 > to 10.222.28.2 via fe-0/0/0.0
192.168.26.0/24 *[BGP/170] 00:00:10, MED 20, localpref 100, from 192.168.24.1
 AS path: I
 > to 10.222.28.2 via fe-0/0/0.0
192.168.27.0/24 *[BGP/170] 00:00:10, MED 20, localpref 100, from 192.168.24.1
 AS path: I
 > to 10.222.28.2 via fe-0/0/0.0
Originating Routes

- Any change to the default BGP advertisement rules is accomplished with a routing policy
 - Common framework and language used throughout the JUNOS software
 - Constructed using sets of match and action pairs

- Policy is used to inject new routing information
 - Static routes to customers
 - Locally configured null routes
 - Use discard or reject for a next-hop option
 - IGP learned routes
[edit]

user@HongKong# **show routing-options**

static {
 route 10.200.16.0/24 next-hop 10.222.29.2;
 route 10.200.17.0/24 next-hop 10.222.29.2;
 route 10.200.18.0/24 next-hop 10.222.29.2;
 route 10.200.19.0/24 next-hop 10.222.29.2;
}

autonomous-system 65001;
Advertise the Customer Routes

- Policy is configured on Hong Kong to send all static routes

```bash
user@HongKong> show configuration policy-options
policy-statement send-customer-routes {
    term all-customers {
        from protocol static;
        then accept;
    }
}
}
user@HongKong> show configuration protocols bgp
group Internal-Peers {
    type internal;
    local-address 192.168.16.1;
    authentication-key "$9$Qeioz/tu0IcrvBIwgJDmPBIEhSe"; # SECRET-DATA
    export send-customer-routes;
    neighbor 192.168.24.1;
}
```
Multiple methods on the receiving router for verifying the policy worked!

show bgp summary

<table>
<thead>
<tr>
<th>Table</th>
<th>Tot Paths</th>
<th>Act Paths</th>
<th>Suppressed</th>
<th>History</th>
<th>Damp</th>
<th>State</th>
<th>Pending</th>
</tr>
</thead>
<tbody>
<tr>
<td>inet.0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peer</th>
<th>AS</th>
<th>InPkt</th>
<th>OutPkt</th>
<th>OutQ</th>
<th>Flaps</th>
<th>Last Up/Dwn</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.36.1</td>
<td>65002</td>
<td>164</td>
<td>168</td>
<td>0</td>
<td>1</td>
<td>49:04</td>
<td>0/0/0</td>
</tr>
<tr>
<td>192.168.16.1</td>
<td>65001</td>
<td>88</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>43:47</td>
<td>4/4/0</td>
</tr>
</tbody>
</table>

show route terse protocol bgp source-gateway 192.168.16.1

inet.0: 29 destinations, 29 routes (29 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>A Destination</th>
<th>P Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.200.16.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.222.28.1</td>
<td>I</td>
</tr>
<tr>
<td>* 10.200.17.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.222.28.1</td>
<td>I</td>
</tr>
<tr>
<td>* 10.200.18.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.222.28.1</td>
<td>I</td>
</tr>
<tr>
<td>* 10.200.19.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.222.28.1</td>
<td>I</td>
</tr>
</tbody>
</table>
The `show route` command has other popular methods

user@HongKong> `show route advertising-protocol bgp 192.168.24.1`
inet.0: 28 destinations, 28 routes (28 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.200.16.0/24</td>
<td>10.222.29.2</td>
<td>100</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>* 10.200.17.0/24</td>
<td>10.222.29.2</td>
<td>100</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>* 10.200.18.0/24</td>
<td>10.222.29.2</td>
<td>100</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>* 10.200.19.0/24</td>
<td>10.222.29.2</td>
<td>100</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

user@Tokyo> `show route receive-protocol bgp 192.168.16.1`
inet.0: 29 destinations, 29 routes (29 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.200.16.0/24</td>
<td>10.222.29.2</td>
<td>100</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>* 10.200.17.0/24</td>
<td>10.222.29.2</td>
<td>100</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>* 10.200.18.0/24</td>
<td>10.222.29.2</td>
<td>100</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>* 10.200.19.0/24</td>
<td>10.222.29.2</td>
<td>100</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>
Summarize Your Routes

- **Tokyo would like to summarize all routes in AS 65001 towards London**

  ```
  [edit]
  user@Tokyo# show policy-options
  policy-statement send-aggregate-route {
    term send-aggregate {
      from protocol aggregate;
      then accept;
    }
  }
  }
  
  [edit]
  user@Tokyo# set routing-options aggregate route 10.200/16
  user@Tokyo# set routing-options aggregate route 10.222/16
  
  [edit protocols bgp group External-AS65002]
  user@Tokyo# set export send-aggregate-route
  ```
Aggregation Problems

- The aggregate routes are sent, but so are some of the more-specific contributing routes

```bash
user@Tokyo> show route advertising-protocol bgp 172.16.36.1
inet.0: 31 destinations, 31 routes (31 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.200.0.0/16</td>
<td>Self</td>
<td>I</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>10.200.16.0/24</td>
<td>Self</td>
<td>I</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>10.200.17.0/24</td>
<td>Self</td>
<td>I</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>10.200.18.0/24</td>
<td>Self</td>
<td>I</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>10.200.19.0/24</td>
<td>Self</td>
<td>I</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>10.222.0.0/16</td>
<td>Self</td>
<td>I</td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>
```

- What happened here?
Don’t Forget the Defaults!

- **Remember that the default BGP policy advertises all active BGP routes**

 - **The more-specific contributing routes in our case**

  ```
  user@Tokyo> show route protocol bgp terse
  inet.0: 31 destinations, 31 routes (31 active, 0 holddown, 0 hidden)
  + = Active Route, - = Last Active, * = Both
  
  A Destination        P Prf Metric 1  Metric 2  Next hop        AS
  path
  * 10.200.16.0/24     B 170        100            >10.222.28.1   I
  * 10.200.17.0/24     B 170        100            >10.222.28.1   I
  * 10.200.18.0/24     B 170        100            >10.222.28.1   I
  * 10.200.19.0/24     B 170        100            >10.222.28.1   I
  ```
Modify the Policy

◆ Add a term to the policy that rejects (doesn’t send) the more-specific contributing routes

```
[edit policy-options policy-statement send-aggregate-route]
user@Tokyo# set term suppress-specifics from route-filter 10.200/16 longer
user@Tokyo# set term suppress-specifics then reject

[edit policy-options policy-statement send-aggregate-route]
user@Tokyo# show
term send-aggregate {
    from protocol aggregate;
    then accept;
}
term suppress-specifics {
    from {
        route-filter 10.200.0.0/16 longer;
    }
    then reject;
}
```
Successful Aggregation

- Only the aggregate routes are now sent

user@Tokyo> `show route advertising-protocol bgp 172.16.36.1`

inet.0: 31 destinations, 31 routes (31 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.200.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 10.222.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>

user@London> `show route receive-protocol bgp 192.168.24.1`

inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.200.0.0/16</td>
<td>192.168.24.1</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
<tr>
<td>* 10.222.0.0/16</td>
<td>192.168.24.1</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
</tbody>
</table>
[edit routing-options]
user@London# set aggregate route 172.16/16

[edit]
user@London# show policy-options
policy-statement send-aggregate-route {
 term send-aggregate {
 from protocol aggregate;
 then accept;
 }
}

London (AS 65002)

Tokyo (AS 65001)

Hong Kong (AS 65001)

Multiple Customer Routes

10.222.28.1/24
10.222.28.2/24

10.10.4.2/24

lo0: 192.168.16.1
lo0: 192.168.24.1
lo0: 172.16.36.1
Problems in AS 65001

- **Tokyo received the 172.16/16 route from London**
- **Sent it to Hong Kong**

```
user@Tokyo> show route receive-protocol bgp 172.16.36.1
inet.0: 32 destinations, 32 routes (32 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.0.0/16</td>
<td>172.16.36.1</td>
<td></td>
<td></td>
<td>65002 I</td>
</tr>
</tbody>
</table>

user@Tokyo> show route terse protocol bgp 172.16/16
inet.0: 32 destinations, 32 routes (32 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>Destination</th>
<th>P Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.0.0/16</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>&gt;10.10.4.2</td>
<td>65002 I</td>
</tr>
</tbody>
</table>

user@Tokyo> show route advertising-protocol bgp 192.168.16.1
inet.0: 32 destinations, 32 routes (32 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.0.0/16</td>
<td>172.16.36.1</td>
<td>100</td>
<td></td>
<td>65002 I</td>
</tr>
</tbody>
</table>
```
Problems in AS 65001

- **Hong Kong doesn’t see the route**
 - **We have some clues**

```
user@HongKong> show route receive-protocol bgp 192.168.24.1
inet.0: 29 destinations, 29 routes (28 active, 0 holddown, 1 hidden)

user@HongKong> show route terse protocol bgp 172.16/16
inet.0: 29 destinations, 29 routes (28 active, 0 holddown, 1 hidden)

user@HongKong> show bgp summary
Groups: 1  Peers: 1  Down peers: 0
Table   Tot Paths  Act Paths  Suppressed  History  Damp  State  Pending
inet.0   1          0          0          0       0          0
Peer     AS  InPkt  OutPkt  OutQ  Flaps  Last Up/Dwn  State
192.168.24.1  65001  2205    2206  0     0        18:22:04 0/1/0
```
Next Hop Problems

- The BGP Next Hop is currently set to 172.16.36.1
 - Loopback address of London
 - Hong Kong doesn’t have a route to that address

user@HongKong> show route hidden extensive
inet.0: 29 destinations, 29 routes (28 active, 0 holddown, 1 hidden)
172.16.0.0/16 (1 entry, 0 announced)
 BGP Preference: 170/-101
 Next hop type: Unusable
 State: <Hidden Int Ext>
 Local AS: 65001 Peer AS: 65001
 Age: 10:32
 Task: BGP_65001.192.168.24.1+1067
 AS path: 65002 IAggregator: 65002 172.16.36.1
 Localpref: 100
 Router ID: 192.168.24.1
 Indirect next hops: 1

 Protocol next hop: 172.16.36.1 Indirect next hop: 0 -
Next Hop Resolution

- **Tokyo alters the BGP Next Hop before advertising the route to Hong Kong**
- Other methods are available

```bash
[edit]
user@Tokyo# show policy-options policy-statement next-hop-self
term set-nh {
  then {
    next-hop self;
  }
}
[edit]
user@Tokyo# set protocols bgp group Internal-Peers export next-hop-self

user@Tokyo> show route advertising-protocol bgp 192.168.16.1
inet.0: 30 destinations, 30 routes (30 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>NextHop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.0.0/16</td>
<td>Self</td>
<td>100</td>
<td>65002</td>
<td>I</td>
</tr>
</tbody>
</table>
```
Next Hop Resolution

- Hong Kong now has a usable route
 - Loopback address of Tokyo is now the BGP Next Hop

```
user@HongKong> show route receive-protocol bgp 192.168.24.1
inet.0: 29 destinations, 29 routes (29 active, 0 holddown, 0 hidden)

  Prefix                   Nexthop              MED     Lclpref AS path
* 172.16.0.0/16            192.168.24.1
                                      100        65002 I

user@HongKong> show route terse protocol bgp
inet.0: 29 destinations, 29 routes (29 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

A Destination        P Prf Metric 1 Metric 2 Next hop        AS path
* 172.16.0.0/16      B 170    100          >10.222.28.2   65002 I
```
Troubleshooting Commands

- `show configuration protocols bgp`
- `show bgp summary`
- `show route advertising-protocol bgp neighbor`
 - Routes sent by BGP to a specific peer
- `show route receive-protocol bgp neighbor`
 - Routes received by BGP from a specific peer
- `show route protocol bgp`
 - All BGP routes installed in the `inet.0` routing table
- `show route hidden extensive`
 - All hidden routes in `inet.0`
 - Routes not usable due to BGP Next Hop problems
 - Routes filtered by an inbound `route-filter`
Agenda: Troubleshooting BGP

- Originating Routes

- Filtering Routes
 - AS Path
 - Prefixes
 - Communities

- Reference Slides
Filtering and Modifying Routes

- The JUNOS software routing policy language is also used to filter IP prefixes
 - Use a `route-filter` statement to find the appropriate routes

- AS Path regular expressions are used to match routes in a policy
 - Define the regular expression
 - Use the `from as-path` syntax in the policy

- BGP communities are modified using policies
 - Add new communities using `add` or `set` commands
 - Delete existing communities using the `delete` command

- All appropriate BGP attributes are sent by default for all routes
 - This includes any current community values
Filtering Routes — AS Path

- London would like to filter all routes from the peer AS of 65200
 - Currently all routes are being sent to Tokyo
 - BGP default policy is advertising them

```bash
user@London> show route advertising-protocol bgp 192.168.24.1
inet.0: 21 destinations, 21 routes (21 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.200.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
<tr>
<td>* 10.222.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
<tr>
<td>* 172.16.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.20.20.32/27</td>
<td>Self</td>
<td></td>
<td></td>
<td>65200 I</td>
</tr>
<tr>
<td>* 172.21.21.200/30</td>
<td>Self</td>
<td></td>
<td></td>
<td>65005 64512 64888 I</td>
</tr>
<tr>
<td>* 172.22.22.0/23</td>
<td>Self</td>
<td></td>
<td></td>
<td>65005 64512 64888 I</td>
</tr>
<tr>
<td>* 172.23.23.48/29</td>
<td>Self</td>
<td></td>
<td></td>
<td>65200 I</td>
</tr>
</tbody>
</table>
```
Filtering Routes — AS Path

- Create a policy that matches on all routes from the AS 65200 peer and reject them
 - Define the regular expression by name
 - Reference the regular expression name in the policy

```
[edit]
user@London# show policy-options
policy-statement filter-on-AS-Path {
  term filter-peer-AS65200 {
    from as-path peer-AS65200;
    then reject;
  }
}
as-path peer-AS65200 "65200 .*";
```
Filtering Routes — AS Path

- **Apply the** filter-on-AS-Path **policy to the appropriate peer group**
 - Ensure that it is the first policy used by altering the order with the insert command

```bash
[edit protocols bgp group External-AS65001]
user@London# show
type external;
local-address 172.16.36.1;
export [ filter-on-AS-Path send-aggregate-route ];
peer-as 65001;
neighbor 192.168.24.1 {
    multihop {
        ttl 2;
    }
}
```
Filtering Routes — AS Path

- Routes from AS 65200 are no longer sent

```
user@London> show route advertising-protocol bgp 192.168.24.1
inet.0: 21 destinations, 21 routes (21 active, 0 holddown, 0 hidden)
Prefix            Nexthop           MED     Lclpref AS path
* 10.200.0.0/16    Self                                 65001 I
* 10.222.0.0/16    Self                                 65001 I
* 172.16.0.0/16    Self                                 I
* 172.21.21.200/30 Self                                 65005 64512 64888 I
* 172.22.22.0/23    Self                                 65005 64512 64888 I
```

```
user@Tokyo> show route receive-protocol bgp 172.16.36.1
inet.0: 32 destinations, 32 routes (32 active, 0 holddown, 0 hidden)
Prefix            Nexthop       MED   Lclpref AS path
* 172.16.0.0/16    172.16.36.1                    65002 I
* 172.21.21.200/30 172.16.36.1                    65002 65005 64512 64888 I
* 172.22.22.0/23    172.16.36.1                    65002 65005 64512 64888 I
```
Filtering Routes — AS Path

- London now wants to also restrict all IBGP learned routes
 - Only advertise the “nailed up” summary route
 - We have an existing policy, so let’s modify it
 - “()” is the same as “^$”

```
[edit]
user@London# show policy-options

policy-statement filter-on-AS-Path {
    term filter-peer-AS65200 {
        from as-path [ peer-AS65200 ibgp-null-AS-Path ];
        then reject;
    }
}

as-path peer-AS65200 "65200 .*";
as-path ibgp-null-AS-Path "( )";
```
Filtering Routes — AS Path

- Out configuration doesn’t work right
 - The 172.16/16 summary route is not sent

user@London> `show route advertising-protocol bgp 192.168.24.1`
inet.0: 21 destinations, 21 routes (21 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.200.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
<tr>
<td>* 10.222.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
<tr>
<td>* 172.21.21.200/30</td>
<td>Self</td>
<td></td>
<td></td>
<td>65005 64512 64888 I</td>
</tr>
<tr>
<td>* 172.22.22.0/23</td>
<td>Self</td>
<td></td>
<td></td>
<td>65005 64512 64888 I</td>
</tr>
</tbody>
</table>

user@Tokyo> `show route receive-protocol bgp 172.16.36.1`
inet.0: 31 destinations, 31 routes (31 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.21.21.200/30</td>
<td>172.16.36.1</td>
<td></td>
<td></td>
<td>65002 65005 64512 64888 I</td>
</tr>
<tr>
<td>* 172.22.22.0/23</td>
<td>172.16.36.1</td>
<td></td>
<td></td>
<td>65002 65005 64512 64888 I</td>
</tr>
</tbody>
</table>
Filtering Routes — AS Path

- The current order of the policies is no longer appropriate
 - The aggregate route has a Null AS path and it is being rejected by the `filter-on-AS-Path` policy

```
user@London> show route 172.16/16 exact detail
inet.0: 21 destinations, 21 routes (21 active, 0 holddown, 0 hidden)
172.16.0.0/16 (1 entry, 1 announced)
  *Aggregate Preference: 130
  Next hop type: Reject
  State: <Active Int Ext>
  Task: Aggregate
  AS path: I (LocalAgg)
  AS path list:
  AS path: I  Refcount: 2
  Contributing Routes (2):
    172.16.36.1/32       proto Direct
    172.16.32.1/32       proto OSPF
```
Filtering Routes — AS Path

- **Use the `insert` command to change the order of the policies**

```
[edit protocols bgp group External-AS65001]
user@London# show
type external;
local-address 172.16.36.1;
export [ filter-on-AS-Path send-aggregate-route ];
peer-as 65001;
neighbor 192.168.24.1 {
  (Information deleted)
user@London# insert export send-aggregate-route before filter-on-AS-Path
user@London# show
type external;
local-address 172.16.36.1;
export [ send-aggregate-route filter-on-AS-Path ];
peer-as 65001;
neighbor 192.168.24.1 {
  (Information deleted)
```
Filtering Routes — AS Path

- All appropriate routes are now sent

```
user@London> show route advertising-protocol bgp 192.168.24.1
inet.0: 21 destinations, 21 routes (21 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.200.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
<tr>
<td>* 10.222.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
<tr>
<td>* 172.16.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.21.21.200/30</td>
<td>Self</td>
<td></td>
<td></td>
<td>65005 64512 64888 I</td>
</tr>
<tr>
<td>* 172.22.22.0/23</td>
<td>Self</td>
<td></td>
<td></td>
<td>65005 64512 64888 I</td>
</tr>
</tbody>
</table>

user@Tokyo> show route receive-protocol bgp 172.16.36.1
inet.0: 32 destinations, 32 routes (32 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.0.0/16</td>
<td>172.16.36.1</td>
<td></td>
<td></td>
<td>65002 I</td>
</tr>
<tr>
<td>* 172.21.21.200/30</td>
<td>172.16.36.1</td>
<td></td>
<td></td>
<td>65002 65005 64512 64888 I</td>
</tr>
<tr>
<td>* 172.22.22.0/23</td>
<td>172.16.36.1</td>
<td></td>
<td></td>
<td>65002 65005 64512 64888 I</td>
</tr>
</tbody>
</table>
```
Agenda: Troubleshooting BGP

- Originating Routes
- Filtering Routes
 - AS Path
 - Prefixes
 - Communities
- Reference Slides
Filtering Routes — Prefixes

- **AS 65001 does not want to receive any routes with a subnet mask longer than /24**
- **It is currently receiving one such route from London**

```
user@Tokyo> show route receive-protocol bgp 172.16.36.1
inet.0: 32 destinations, 32 routes (32 active, 0 holddown, 0 hidden)

Prefix                   Nexthop       MED   Lclpref AS path
* 172.16.0.0/16            172.16.36.1                    65002 I
* 172.21.21.200/30         172.16.36.1                    65002 65005 64512 64888 I
* 172.22.22.0/23           172.16.36.1                    65002 65005 64512 64888 I
```
Filtering Routes — Prefixes

◆ Create a policy that rejects the unwanted route

[edit]

user@Tokyo# show policy-options

policy-statement filter-bad-prefixes {
 term bad-AS-65002-routes {
 from {
 route-filter 172.21.21.200/30 exact;
 }
 then reject;
 }
}

[edit protocols bgp group External-AS65002]

user@Tokyo# set import filter-bad-prefixes
Filtering Routes — Prefixes

◆ The filter appears to work perfectly

user@Tokyo> show route receive-protocol bgp 172.16.36.1
inet.0: 32 destinations, 32 routes (31 active, 0 holddown, 1 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.0.0/16</td>
<td>172.16.36.1</td>
<td></td>
<td></td>
<td>65002 I</td>
</tr>
<tr>
<td>* 172.22.22.0/23</td>
<td>172.16.36.1</td>
<td></td>
<td></td>
<td>65002 65005 64512 64888 I</td>
</tr>
</tbody>
</table>

user@Tokyo> show route hidden
inet.0: 32 destinations, 32 routes (31 active, 0 holddown, 1 hidden)

+ = Active Route, - = Last Active, * = Both

172.21.21.200/30 [BGP] 01:22:33, localpref 100, from 172.16.36.1

AS path: 65002 65005 64512 64888 I

> to 10.10.4.2 via fe-0/0/1.0
However, the *filter-bad-prefixes* policy is not very scalable

- Better to create a policy that rejects all possible routes with a mask greater than /24
- Replace the current route-filter to use the prefix-length-range option

```
[edit]
user@Tokyo# show policy-options

policy-statement filter-bad-prefixes {
    term no-more-than-24-bits {
        from {
            route-filter 0.0.0.0/0 prefix-length-range /25-/32;
        }
        then reject;
    }
}
```
Filtering Routes — Prefixes

* The generic filter still rejects the 172.21.21.200/30 route but other prefixes as well

```
user@Tokyo> show route receive-protocol bgp 172.16.36.1
inet.0: 34 destinations, 34 routes (31 active, 0 holddown, 3 hidden)
   Prefix                   Nexthop       MED   Lclpref  AS path
   * 172.16.0.0/16            172.16.36.1                    65002 I
   * 172.22.22.0/23           172.16.36.1                    65002 65005 64512 64888 I

user@Tokyo> show route hidden terse
inet.0: 34 destinations, 34 routes (31 active, 0 holddown, 3 hidden)
+ = Active Route, - = Last Active, * = Both
A Destination       P Prf Metric 1  Metric 2  Next hop   AS path
  172.21.21.200/30  B           100           >10.10.4.2  65002 65005 64512 64888 I
  172.24.24.64/29   B           100           >10.10.4.2  65002 65005 64512 64888 I
  172.25.25.128/25  B           100           >10.10.4.2  65002 65005 64512 64888 I
```
Agenda: Troubleshooting BGP

- Originating Routes
- Filtering Routes
 - AS Path
 - Prefixes
 - Communities
- Reference Slides
Filtering Routes — Communities

- **London doesn’t want routes with 64321:1234 community**

User@London> `show route receive-protocol bgp 192.168.24.1 detail`

inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)

* 10.200.0.0/16 (1 entry, 1 announced)

 Nexthop: 192.168.24.1

 AS path: 65001 I Aggregator: 65001 192.168.24.1

 Communities: 65001:1001

* 10.222.0.0/16 (1 entry, 1 announced)

 Nexthop: 192.168.24.1

 AS path: 65001 I Aggregator: 65001 192.168.24.1

 Communities: 65001:1001

* 10.244.0.0/16 (1 entry, 1 announced)

 Nexthop: 192.168.24.1

 AS path: 65001 I

 Communities: 64321:1234 65001:1001
Filtering Routes — Communities

- Create a policy that rejects the unwanted route
 - Create a community name and reference it in the policy

```
[edit]
user@London# show policy-options
policy-statement filter-on-community {
  term nothing-with-1234 {
    from community AS64321-community;
    then reject;
  }
}
community AS64321-community members 64321:1234;

[edit protocols bgp group External-AS65001]
user@London# set import filter-on-community
```
Filtering Routes — Communities

◆ The filter appears to work

user@London> show route receive-protocol bgp 192.168.24.1
inet.0: 24 destinations, 24 routes (23 active, 0 holddown, 1 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.200.0.0/16</td>
<td>192.168.24.1</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
<tr>
<td>* 10.222.0.0/16</td>
<td>192.168.24.1</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
</tbody>
</table>

user@London> show route hidden
inet.0: 24 destinations, 24 routes (23 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

10.244.0.0/16 [BGP] 00:05:13, localpref 100, from 192.168.24.1
 AS path: 65001 I
 > to 10.10.4.1 via fe-0/0/0.0
Filtering Routes — Communities

- London would also like to remove the current communities on the routes received from Tokyo
 - Modify the *filter-on-community* policy

```plaintext
[edit]
user@London# show policy-options
policy-statement filter-on-community {
  term remove-AS65001 {
    from community AS65001-community;
    then {
      community delete AS65001-community;
    }
  }
  term nothing-with-1234 {
    from community AS64321-community;
    then reject;
  }
}
community AS64321-community members 64321:1234;
community AS65001-community members 65001:1001;
```
Filtering Routes — Communities

- The policy appears correct, but it doesn’t appear that anything has changed

```
user@London> show route receive-protocol bgp 192.168.24.1 detail
inet.0: 24 destinations, 24 routes (23 active, 0 holddown, 1 hidden)
* 10.200.0.0/16 (1 entry, 1 announced)
    Nexthop: 192.168.24.1
    AS path: 65001 I Aggregator: 65001 192.168.24.1
    Communities: 65001:1001

* 10.222.0.0/16 (1 entry, 1 announced)
    Nexthop: 192.168.24.1
    AS path: 65001 I Aggregator: 65001 192.168.24.1
    Communities: 65001:1001
```
Filtering Routes — Communities

Let’s view things from a different perspective

user@London> show route protocol bgp source-gateway 192.168.24.1
inet.0: 24 destinations, 24 routes (23 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both
10.200.0.0/16 *[BGP/170] 1d 00:05:00, localpref 100, from 192.168.24.1
 AS path: 65001 I
 > to 10.10.4.1 via fe-0/0/0.0
10.222.0.0/16 *[BGP/170] 1d 00:05:00, localpref 100, from 192.168.24.1
 AS path: 65001 I
 > to 10.10.4.1 via fe-0/0/0.0

user@London> show route community-name AS65001-community
inet.0: 24 destinations, 24 routes (23 active, 0 holddown, 1 hidden)

user@London>

The receive-protocol option shows routes before policy actions have occurred
Like before, the current filter-on-community policy is not very scalable. Let’s change that!

[edit]
user@London# show policy-options
policy-statement filter-on-community {
 term remove-all-communities {
 then {
 community delete all-communities;
 }
 }
 term nothing-with-1234 {
 from community AS64321-community;
 then reject;
 }
}
community AS64321-community members 64321:1234;
community all-communities members *::*;
Filtering Routes — Communities

- We don’t have any communities on the routes in the routing table

 user@London> `show route detail | match comm`

 user@London>

- But something has changed.
 - The 10.244/16 route is now being accepted

 user@London> `show route receive-protocol bgp 192.168.24.1`

 inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)

 Prefix | Nexthop | MED | Lclpref | AS path
 * 10.200.0.0/16 | 192.168.24.1 | | | 65001 I
 * 10.222.0.0/16 | 192.168.24.1 | | | 65001 I
 * 10.244.0.0/16 | 192.168.24.1 | | | 65001 I
Filtering Routes — Communities

- We’ve created a logic error in our policy
 - There is no accept or reject action in the first term
 - All routes have their community removed
 - The second term no longer matches the appropriate route
Filtering Routes — Communities

- **Alter the term order with the `insert` command**

```plaintext
[edit policy-options policy-statement filter-on-community]
lab@London# insert term remove-all-communities after term nothing-with-1234

[edit policy-options policy-statement filter-on-community]
lab@London# show
term nothing-with-1234 {
    from community AS64321-community;
    then reject;
}
term remove-all-communities {
    then {
        community delete all-communities;
    }
}
```
Filtering Routes — Communities

▶ Now things look better!

user@London> `show route detail | match comm`

user@London>

user@London> `show route receive-protocol bgp 192.168.24.1`

inet.0: 24 destinations, 24 routes (23 active, 0 holddown, 1 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.200.0.0/16</td>
<td>192.168.24.1</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
<tr>
<td>* 10.222.0.0/16</td>
<td>192.168.24.1</td>
<td></td>
<td></td>
<td>65001 I</td>
</tr>
</tbody>
</table>
Troubleshooting Commands

- `show configuration`
- `show route advertising-protocol bgp neighbor`
- `show route receive-protocol bgp neighbor`
- `show route hidden`
- `show route community-name name-of-community`
 - Displays all routes containing the community value defined in `name-of-community`
- `show route detail`
 - Displays routes and their communities values, if appropriate
- `show route detail | match comm`
 - Displays only community values
 - Use to view possible communities in the routing table
Agenda: Troubleshooting BGP

- Originating Routes
- Filtering Routes
 - AS Path
 - Prefixes
 - Communities

⇒ Reference Slides
The Match Type Option

- Specifies type of match applied to destination prefix

<table>
<thead>
<tr>
<th>Match Type</th>
<th>Match if…</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>Prefix-length is equal to route’s prefix length</td>
</tr>
<tr>
<td>orlonger</td>
<td>Prefix-length is equal to or greater than route’s prefix length</td>
</tr>
<tr>
<td>longer</td>
<td>Prefix-length is greater than route’s prefix length</td>
</tr>
</tbody>
</table>
The Match Type Option

- **Specifies type of match applied to destination prefix**

<table>
<thead>
<tr>
<th>Match Type</th>
<th>Match if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>upto</td>
<td>Route shares most significant bits (as set in prefix-length) and route’s prefix length falls between prefix-length and prefix-length2</td>
</tr>
<tr>
<td>prefix-length-range</td>
<td>Route shares most significant bits and the prefix length is between the two lengths specified</td>
</tr>
<tr>
<td>through</td>
<td>Route falls exactly between first prefix/prefix-length and second prefix/prefix-length (list of exact matches)</td>
</tr>
</tbody>
</table>
What Matches?

Starting at prefix of 192.168/16, what matches with each option?
<table>
<thead>
<tr>
<th>Prefix</th>
<th>192.168/16 exact</th>
<th>192.168/16 or longer</th>
<th>192.168/16 longer</th>
<th>192.168/16 upto /24</th>
<th>192.168/16 prefix-length-range /18^-/20</th>
<th>192.168/16 through 192.168.16/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.0/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.0.0/16</td>
<td>Passes</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td>Passes</td>
</tr>
<tr>
<td>192.168.0.0/17</td>
<td>Passes</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td>Passes</td>
</tr>
<tr>
<td>192.168.0.0/18</td>
<td>Passes</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td>Passes</td>
</tr>
<tr>
<td>192.168.0.0/19</td>
<td>Passes</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td>Passes</td>
</tr>
<tr>
<td>192.168.4.0/24</td>
<td>Passes</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td>Passes</td>
</tr>
<tr>
<td>192.168.5.4/30</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.12.4/30</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.12.128/32</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.16.0/20</td>
<td>Passes</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td>Passes</td>
</tr>
<tr>
<td>192.168.192.0/18</td>
<td>Passes</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td>Passes</td>
</tr>
<tr>
<td>192.168.224.0/19</td>
<td>Passes</td>
<td>Passes</td>
<td>Passes</td>
<td></td>
<td></td>
<td>Passes</td>
</tr>
<tr>
<td>192.169.1.0/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.170.0.0/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Regular Expression Terms

- Regular expressions take form \textit{term} \textless\textit{operator}\textgreater
- \textit{Terms} are mandatory, and identify the AS number:
 - Can be a single AS number
 - “1024”
 - Can be a complete AS path
 - “1024 2685 3957”
 - Can be a wildcard “.” character which represents a single AS
 - “1024 . 3957”
- Each AS number (not a character) represents a single “entity” to the regular expression parser
Regular Expression Operators

- Regular expressions take form `term <operator>`
- The operator is an optional pattern matching character that applies to a single term:
 - Operators immediately follow the term referenced
 - “1024? 2685”
 - The pipe (|) operator is used between terms
 - “1024 | 2685”
 - The dash (-) operator is used between terms
 - “1024 - 2685”

- One or more term-operator pairs can appear in an AS Path Regular Expression
AS Path Regex Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{m,n}</code></td>
<td>Match at least (m) and at most (n) repetitions of (\text{term})</td>
</tr>
<tr>
<td><code>{m}</code></td>
<td>Match exactly (m) repetitions of (\text{term})</td>
</tr>
<tr>
<td><code>{m,}</code></td>
<td>Match (m) or more repetitions of (\text{term})</td>
</tr>
<tr>
<td><code>*</code></td>
<td>Match 0 or more repetitions of (\text{term}), same as ({0,})</td>
</tr>
<tr>
<td><code>+</code></td>
<td>Match 1 or more repetitions of (\text{term}), same as ({1,})</td>
</tr>
<tr>
<td><code>?</code></td>
<td>Match 0 or 1 repetitions of (\text{term}), same as ({0,1})</td>
</tr>
<tr>
<td>`</td>
<td>`</td>
</tr>
<tr>
<td><code>-</code></td>
<td>Used to represent a range</td>
</tr>
<tr>
<td><code>(\ldots),()</code></td>
<td>Used to group (\text{terms}), or indicate null with no space</td>
</tr>
</tbody>
</table>
Regular Expression Examples

<table>
<thead>
<tr>
<th>AS Path pattern to match:</th>
<th>Regex:</th>
<th>Example matches:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exactly one instance of AS 1234</td>
<td>1234</td>
<td>1234</td>
</tr>
<tr>
<td>0 or more instances of AS 1234</td>
<td>1234*</td>
<td>1234, 1234 1234, etc., or Null AS Path</td>
</tr>
<tr>
<td>0 or 1 instances of AS 1234</td>
<td>1234?</td>
<td>1234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Null AS Path</td>
</tr>
<tr>
<td>1 to 3 instances of AS 12 followed by 1 instance of AS 34</td>
<td>“12{1,3} 34”</td>
<td>12 34, 12 12 34, 12 12 12 34</td>
</tr>
<tr>
<td>Range of AS numbers to match a single AS</td>
<td>“123 - 125”</td>
<td>123 or 124 or 125</td>
</tr>
</tbody>
</table>
Community Actions: add

Leave existing communities alone and add in the specified value

192.168.0.0/24 (2 entries, 1 announced)
Communities: 64512:567 100:20 50:70 1234:66

[edit policy-options]
policy-statement community-actions {
 term add-a-community
 then community add test-comm;
 }
}
community test-comm members 65001:1234;

192.168.0.0/24 (2 entries, 1 announced)
Communities: 64512:567 100:20 50:70 1234:66 65001:1234
Community Actions: delete

Remove only the specified values and leave other existing communities alone

192.168.0.0/24 (2 entries, 1 announced)
 Communities: 64512:567 100:20 50:70 1234:66

[edit policy-options]
policy-statement community-actions {
 term add-a-community
 then community delete test-comm;
}
}
community test-comm members 64512:567;

192.168.0.0/24 (2 entries, 1 announced)
 Communities: 100:20 50:70 1234:66
Community Actions: set

Remove ALL existing communities and add the specified values

192.168.0.0/24 (2 entries, 1 announced)
 Communities: 64512:567 100:20 50:70 1234:66

[edit policy-options]
 policy-statement community-actions {
 term add-a-community
 then community set test-comm;
 } }
 community test-comm members 65001:1234;

192.168.0.0/24 (2 entries, 1 announced)
 Communities: 65001:1234
Questions and Comments

- We’ve attempted to show you the tools that allow you to troubleshoot your BGP networks
 - After you master these concepts, you can attack “bigger” problems
- Future topics?
 - Establishing Peers
 - Route Selection
 - Others?
- Feedback on this presentation is highly encouraged
 - jms@juniper.net
- Questions?
Thank you!

http://www.juniper.net