
Tony Hain Cisco Systems ahain@cisco.com

Session Number Presentation_ID

© 2002, Cisco Systems, Inc. All rights reserved.

- Review of basics
- Environment descriptions
- Tools appropriate for each environment

Review

Do We Really Need a Larger Address Space?

- Cisco.com
- Internet Users or PC

~530 million users in Q2 CY2002, ~945 million by 2004

(Source: Computer Industry Almanac)

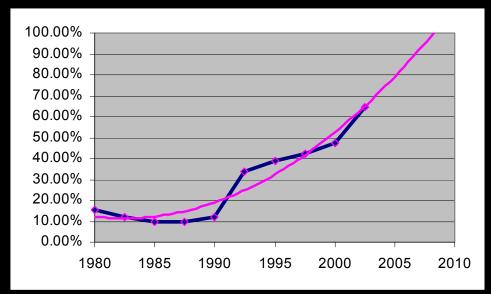
- **Emerging population/geopolitical and Address space**
- PDA, Pen-Tablet, Notepad,...

~20 millions in 2004

Mobile phones

Already 1 billion mobile phones delivered by the industry

- Transportation
 - 1 billion automobiles forecast for 2008

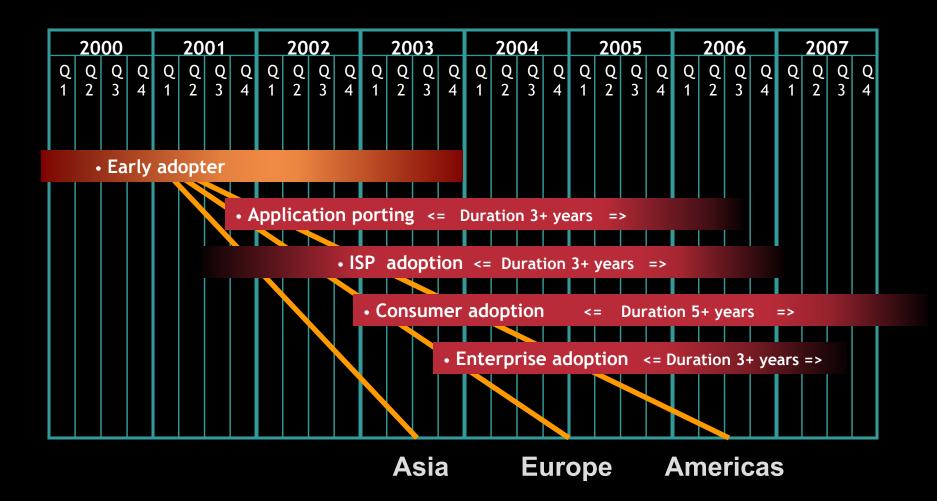

Internet access in Planes

Consumer devices

Billions of Home and Industrial Appliances

IP Address Allocation History

- **1981 IPv4 protocol published**
- **1985** ~ **1/16** of total space
- 1990 ~ 1/8 of total space
- 1995 ~ 1/3 of total space
- 2000 ~ 1/2 of total space
- 2002.5 ~ 2/3 of total space



- This despite increasingly intense conservation efforts PPP / DHCP address sharing NAT (network address translation) CIDR (classless inter-domain routing) plus some address reclamation
- Theoretical limit of 32-bit space: ~4 billion devices
 Practical limit of 32-bit space: ~250 million devices (RFC 3194)

Explosion of New Internet Appliances

IPv6 Timeline (A pragmatic projection)

IPv6 Technology Scope

Cisco.co						
IP Service	IPv4 Solution	IPv6 Solution				
Addressing Range	32-bit, Network Address Translation	128-bit, Multiple Scopes				
Autoconfiguration	DHCP	Serverless, Reconfiguration, DHCP				
Security	IPSec	IPSec Mandated, works End-to-End				
Mobility	Mobile IP	Mobile IP with Direct Routing				
Quality-of-Service	Differentiated Service, Integrated Service	Differentiated Service, Integrated Service				
IP Multicast	IGMP/PIM/Multicast BGP	MLD/PIM/Multicast BGP, <mark>Scope Identifier</mark>				

Presentation_ID

IPv4 & IPv6 Header Comparison

Cisco.com

IPv4 Header

Version IHL Type of Service			Total Length	
lc	lentifi	cation	Flags	Fragment Offset
Time to Live Protocol			Header Checksum	
Source Address				
Destination Address				
Options Pa				Padding

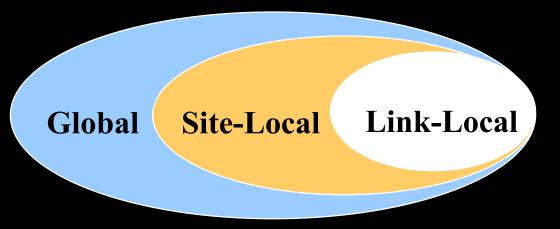
IPv6 Header

Version Traffic Class			Flow Label		
Payload Length			Next Header	Hop Limit	

Source Address

- field's name kept from IPv4 to IPv6
- fields not kept in IPv6
- Name & position changed in IPv6
- New field in IPv6

Destination Address


IPv6 - Addressing Model

Addresses are assigned to interfaces

change from IPv4 model :

Interface 'expected' to have multiple addresses

Addresses have scope Link Local Site Local Global

Addresses have lifetime Valid and Preferred lifetime

Interface Address set

Cisco.com

- Loopback
- Link local
- Site local
- Auto-configured 6to4
- Auto-configured IPv4 compatible
- Solicited node Multicast
- All node multicast
- Global anonymous
- Global published

(only assigned to a single interface per node)

(required on all interfaces)

(if IPv4 public is address available)

(operationally discouraged)

(required for neighbor discovery)

Unicast Address Formats

_1

Link Local

FP (10bits)	RESERVED (54bits)	Interface ID (64bits)
1111111010	MUST be 0	MAC derived

Site Local

FP (10bits)	Subnet (38bits)	Subnet (16bits)	Interface ID (64bits)
1111111011	Locally Administered	Locally Administered	MAC derived or Locally Administered

Global

FP (3bits)	Registry / provider assigned (45bits)	Subnet (16bits)	Interface ID (64bits)
001	Provider Administered	Locally Administered	MAC derived or Locally Administered or Random

Tunneling Unicast Address Formats

Compatible

FP (96bits) IPv4 ID (32b	pits)
MUST be 0 Locally adminis	stered

6to4

FP (16bits)	IPv4 (32bits)	SLA (16bits)	Interface ID (64bits)
00100010	Provider Administered	Locally Administered	MAC derived or Locally Administered or Random

ISATAP

Any (48bits)	SLA (16bits)	Interface ID (64bits)
Provider Administered	Locally Administered	IPv4 derived

Multicast Address Format

FP (8bits)	Flags (4bits)	Scope (4bits)	RESERVED (80bits)	Group ID (32bits)
11111111	000T	Lcl/Sit/Gbl	MUST be 0	Locally administered

• flag field

low-order bit indicates permanent/transient group

(three other flags reserved)

• scope field:

- 1 node local
- 2 link-local
- 5 site-local

- 8 organization-local
- B community-local
- E global

(all other values reserved)

 map IPv6 multicast addresses directly into low order 32 bits of the IEEE 802 MAC

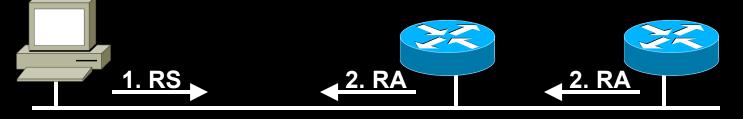
Multicast Address Format Unicast-Prefix based

Cisco.com FP Flags Scope reserved plen (8bits) **Network Prefix (64bits)** Group ID (32bits) (8bits) (4bits) (4bits) (8bits) 11111 Locally MUST be 0 00PT Lcl/Sit/Gbl Unicast prefix Auto configured 111 administered

- P = 1 indicates a multicast address that is assigned based on the network prefix
- plen indicates the actual length of the network prefix
- Source-specific multicast addresses is accomplished by setting P = 1 plen = 0

```
network prefix = 0
```

```
draft-ietf-ipngwg-uni-based-mcast-01.txt
```


Cisco.com

ICMP / ND Walkthrough

Session Number Presentation_ID

ND Autoconfiguration, Prefix & Parameter Discovery

Cisco.com

1. RS:

2. RA:

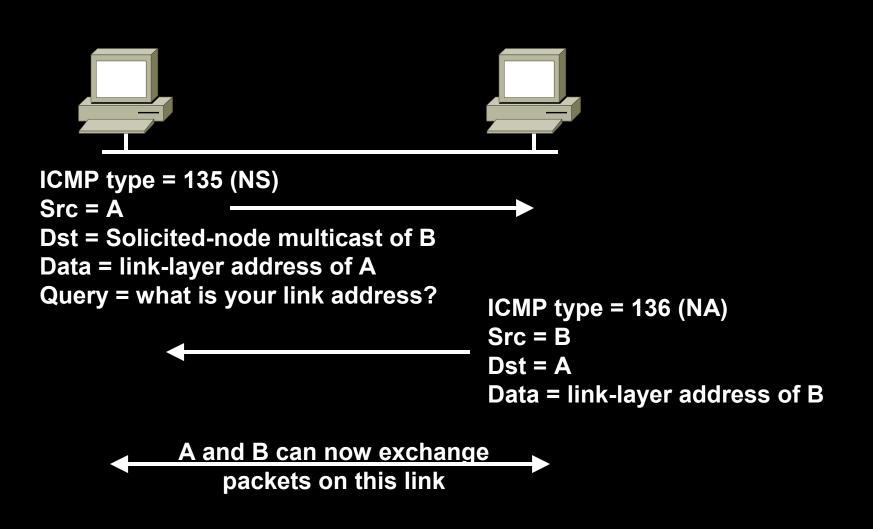
ICMP Type = 133

Src = ::

Dst = All-Routers multicast Address

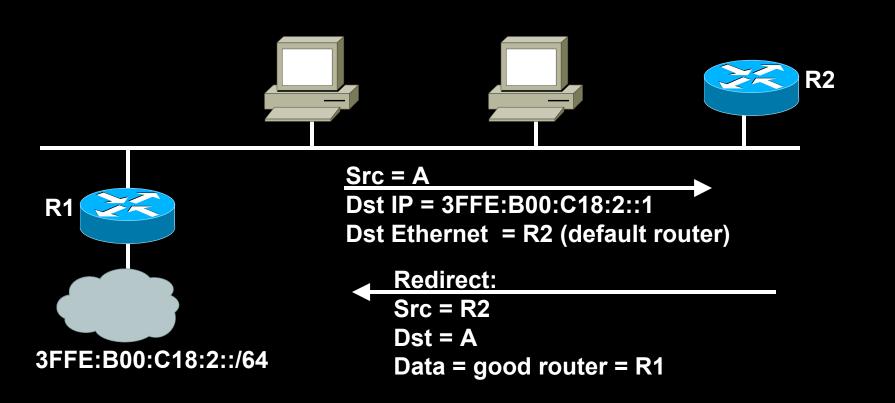
query= please send RA

ICMP Type = 134


Src = Router Link-local Address

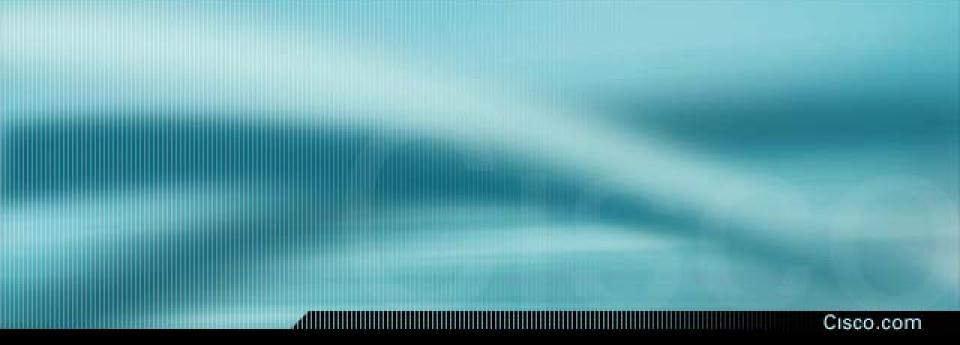
Dst = All-nodes multicast address

Data= options, prefix, lifetime, autoconfig flag

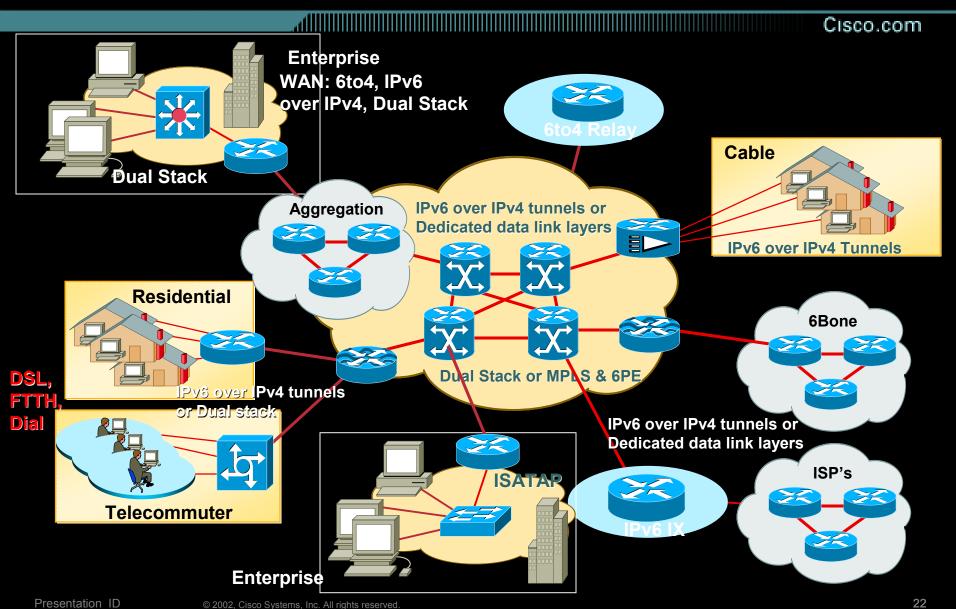

 Router solicitation are sent by booting nodes to request RAs for configuring the interfaces.

ND Address Resolution & Neighbor Unreachability Detection

ND Redirect


Cisco.com

 Redirect is used by a router to signal the reroute of a packet to an onlink host to a better router or to another host on the link



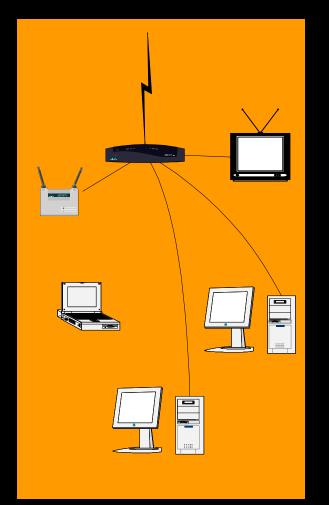
- Review of basics
- Environment descriptions
- Tools appropriate for each environment

Environments

Transition environments

Environments

Cisco.com


Service Provider

Enterprise

Unmanaged

Presentation_ID

Environments – Unmanaged

- No administrative staff to manage configuration or policies
- Devices need to be plugn-play appliances
- Network & hosts share administrative policies
- Tool automation a primary concern

ISP offers IPv6 service

Edge device acquires a prefix to redistribute

ISP still IPv4-only service

(may be due to device limitations like docsis modems)

Tunneling required

Prefix from tunnel broker or automated 6to4/Teredo

If no auto-tunnel to native relays, may need both

Environments – Managed Enterprise

-Campus Network -WAN Campus Network

- Dedicated management staff & tools
- Network & hosts share administrative policies
- Applications will likely require recertification

Managed networks differentiation

Cisco.com

Single geographic region, single administration & policy Multiple geographic regions, single administration & policy Multiple geographic regions, multiple administrations & policy Use of public network for transit service Simple routed case looks like multi-multi above VPN tunneled case would look like multi-single w/circuit setup New enterprise, looking to avoid a transition Deployment order - All at once by definition

For each of the 5 categories consider

Deployment order - Hosts & Apps first vs. Network first ISP offering - IPv4-only IPv4 & IPv6 IPv6-only

Infrastructure concerns

Cisco.com

- Critical Applications
- Addressing : Dynamic vs. controlled
- DNS : Dynamic vs. controlled
 Public visibility of name space
- AAA : Internal & external Mobility of road warrior & telecommuters Mobility of nodes within the enterprise
- ICMP : PMTU & neighbor discovery
- Management tools

Trust between host & network management teams

Cisco.com

Renumbering simplified as old & new can overlap Privacy addresses reduce attack profile

Preferred vs. valid lifetimes

Improper configuration could lead to 100's per interface

Diagnostics require more effort

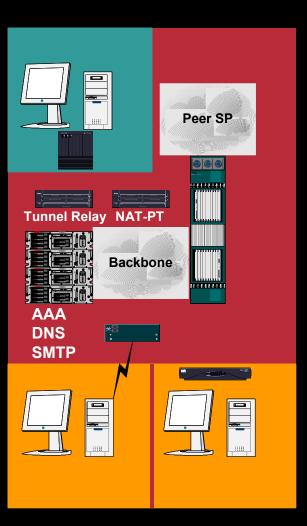
TE via addressing limits multi-homing flexibility

Site-local allows internal stability

Routing Issues

1.....Cisco.com

- Allocations of ::/48 should allow self aggregation by organizations with multiple IPv4 prefixes
- Tunneling


Decouples network from end system deployment

Multicast less efficient

Native service

May require hardware upgrades

Environments – Managed Service Provider

- Dedicated management staff & tools
- Network has different administrative policies than connected hosts or networks
- Interaction with Peer networks may require translation
- Services as Dual-stack
- Distributed tunnel relay service minimizes overhead

Address Allocation Issues

- From Regional Registries
 - ::/32 minimum

HD ratio based on .8 utilization of ::/48s

- To Customers
 - ::/48 Prefix delegation via DHCPv6

(normal customer allocation)

::/64 Prefix delegation via RA or DHCPv6

(for single subnet sites, ie: 802.11 hotspots)

 RFC 3041 addresses allow end system anonymity as they move between networks, but the allocated prefix still allows customer identification for LI conformance

Routing Issues

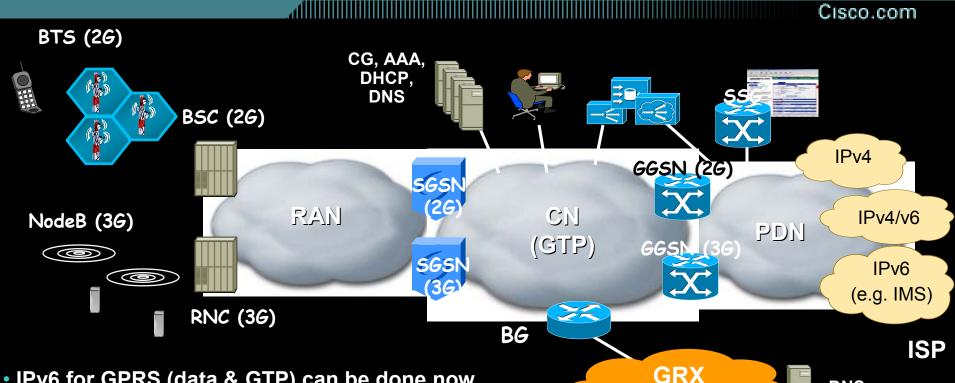
Cisco.com

Allocations should allow massive aggregation

Current allocation policy all PA based, so global BGP table should approach number of origin AS's

 Multi-homed sites still an unsolved problem

- Dual-stack servers
- Consistency of the client and referral chain
- IPv6 glue records
- Sub-domain delegation to consumer customers?


SMTP Issues

Dual-stack MTAs

- Consistency of clients and MX to A/AAAA mappings
- Broken DNS servers return 'nxdomain' for missing AAAA

3GPP Mobile Wireless Network Architecture

• IPv6 for GPRS (data & GTP) can be done now

Mentioned in 2G and 3G R3+ specifications

But only few IPv6 (or dual stack) handset prototype IPv6 for Internet Multimedia Subsystem (mandatory & <u>exclusive</u>)

•Migration from ATM to IP(v6) in UTRAN

Shall be IPv6, IPv4 optional and dual-stack recommended •IP (v4 or v6) for user applications

Presentation_ID

DNS

CN

X

X

(GTP)

 \bigcirc

 $\langle \bullet \rightarrow \rangle$

RAN

- Independent PDP contexts for each version
- Desire to avoid DAD over expensive air link

Only possible when air link end point has full control of a ::/64 or shorter prefix

- Review of basics
- Environment descriptions
- Tools appropriate for each environment

Cisco.com

Deployment tool set

Session Number Presentation_ID

Transition Variables

Cisco.com

Business Requirements

Time frame required to meet a set of business requirements

Need for applications to communicate between administrative domains

New functions that can exist without extensive access to legacy IPv4 nodes

Mission critical applications that must interoperate with legacy nodes

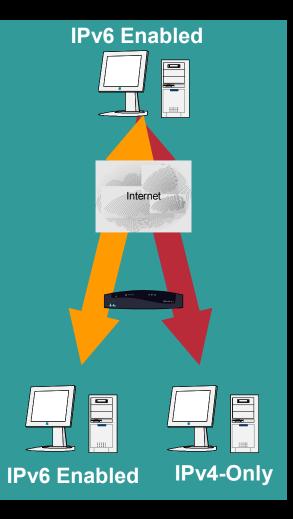
Network Security Requirements

Firewall support for both IPv4 & IPv6

Telecommuters and Mobile Node access methods

- Availability of software & hardware upgrades for existing nodes
 Source code availability for custom applications
- Order and rate for IPv6 deployment within a network Current use of IPv4 private addresses and NAT
 PresentationProvider support for IPv6ed.

IPv4-IPv6 Transition / Co-Existence


Cisco.com

A wide range of techniques have been identified and implemented, basically falling into three categories:

- (1) **Dual-stack** techniques, to allow IPv4 and IPv6 to co-exist in the same devices and networks
- (2) **Tunneling** techniques, to avoid order dependencies when upgrading hosts, routers, or regions
- (3) Translation techniques, to allow IPv6-only devices to communicate with IPv4-only devices

Expect all of these to be used, in combination

Tools – Dual Stack

Primary tool

- Allows continued 'normal' operation with IPv4-only nodes
- Address selection rules generally prefer IPv6
- DSTM variant allows temporary use of IPv4 pool

Dual-Stack Approach

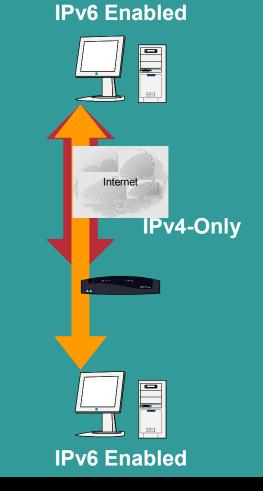
Cisco.com

When adding IPv6 to a system, do not delete IPv4

this multi-protocol approach is familiar and well-understood (e.g., for AppleTalk, IPX, etc.)

note: in most cases, IPv6 will be bundled with new OS releases, not an extra-cost add-on

Applications (or libraries) choose IP version to use


when initiating, based on DNS response:

Prefer scope match first, when equal IPv6 over IPv4

when responding, based on version of initiating packet

 This allows indefinite co-existence of IPv4 and IPv6, and gradual app-by-app upgrades to IPv6 usage

Tools – Tunneling

- Nodes view IPv4 network as a logical NBMA linklayer
- May be used in conjunction with dualstack

Tunneling issues

- IPv4 fragmentation needs to be reconstructed at tunnel endpoint.
- No translation of Path MTU messages between IPv4 & IPv6.
- Translating IPv4 ICMP messages and pass back to IPv6 originator.
- May result in an inefficient topology.

Tunneling issues II

- Tunnel interface is always up. Use routing protocol to determine link failures.
- Be careful with using the same IPv4 source address for several tunneling mechanisms.
 Demultiplexing incoming packets is difficult.

IPv6 over IPv4 Tunnels

Cisco.com

Several Tunnelling mechanisms defined by IETF

Apply to ISP and Enterprise WAN networks

GRE, Configured Tunnels, Automatic Tunnels using IPv4 compatible IPv6 Address, 6to4

Apply to Campus

ISATAP, 6over4

No impact on Core infrastructure

Either IPv4 or MPLS

Tunnels to Get Through IPv6-Ignorant Routers

Cisco.com

- Encapsulate IPv6 packets inside IPv4 packets (or MPLS frames)
- Many methods exist for establishing tunnels: manual configuration
 "tunnel brokers" (using web-based service to create a tunnel)
 automatic (depricated, using IPv4 as low 32bits of IPv6)
 "6-over-4" (intra-domain, using IPv4 multicast as virtual LAN)
 "6-to-4" (inter-domain, using IPv4 addr as IPv6 site prefix)
- Can view this as:

IPv6 using IPv4 as a virtual NBMA link-layer, or an IPv6 VPN (virtual public network), over the IPv4 Internet

Tunneling Mechanisms (operationally challenging)

Cisco.com

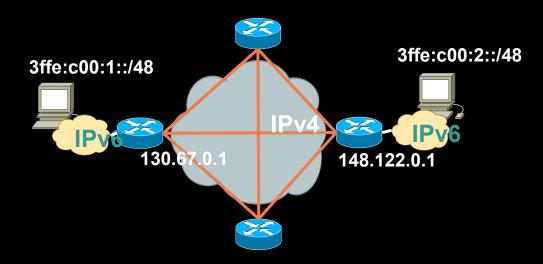
Configured

Prearranged addresses for both IPv4 & IPv6, manually configured

Tunnel Broker

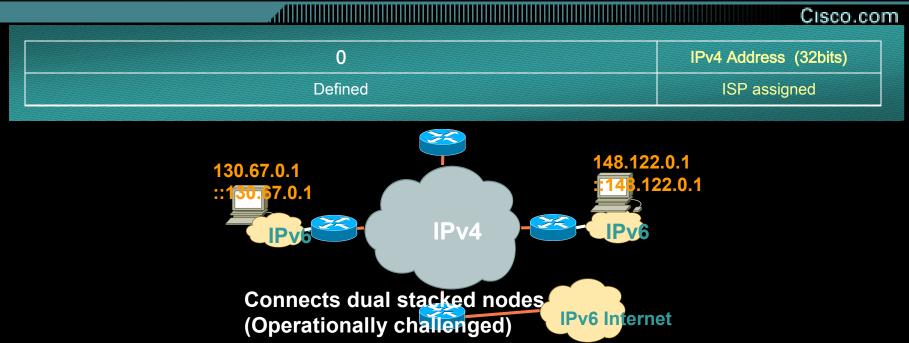
Builds on configured tunnel via IPv4 auth scheme to establish mapping ; typically default route

6over4


Any address, but requires IPv4 multicast for ND

Automatic

Host-to-host – IPv4 address embedded in Iow 32 bits with prefix ::/96


Requires injecting IPv4 BGP table into IPv6 routing

Configured tunnels

Pros	Cons
As point to point links	Has to be configured and managed
Multicast	Inefficient traffic patterns
	No keepalive mechanism, interface is always up

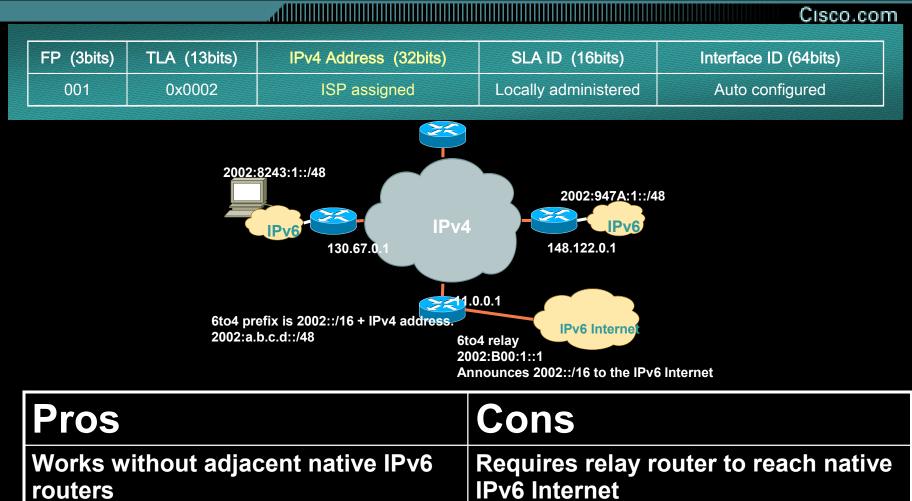
Automatic tunnels

Pros	Cons
Useful for some other mechanisms, like BGP tunnels	Difficult to reach the native IPv6 Internet, without injecting IPv4 routing information in the IPv6 routing table
	⊥routing table

Tunneling Mechanisms (primary set)

• 6to4

Automatic prefix allocation based on public IPv4


ISATAP

Intra-site automatic tunneling with any prefix

Teredo

IPv6 over UDP/IPv4 to traverse NAT

6to4 tunnels

Only site border router needs to know about 6to4

Presentation_ID

All issues that NMBA networks have.

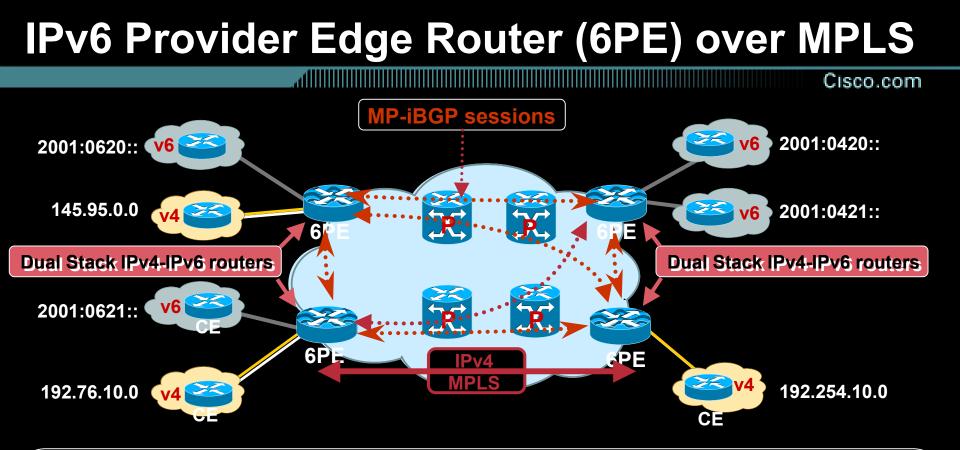
IPv6 over MPLS Infrastructure

Cisco.com

 Some Service Providers have already deployed MPLS in their IPv4 backbone for various reasons

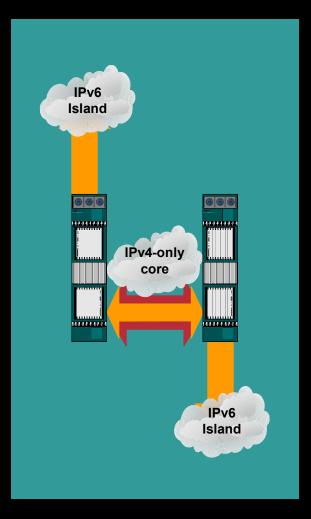
MPLS/VPN, MPLS/QoS, MPLS/TE, ATM + IP switching

Several IPv6 over MPLS scenarios


IPv6 Tunnels configured on CE (no impact on MPLS)

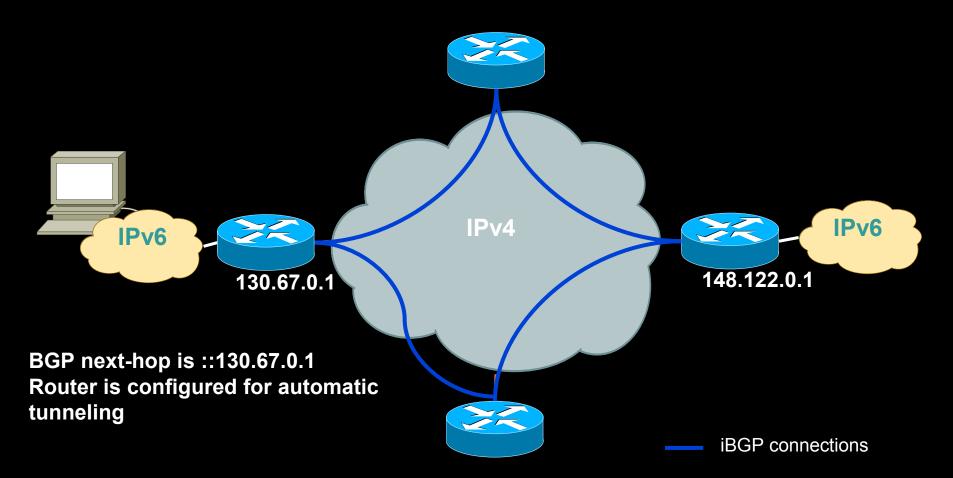
IPv6 over Circuit_over_MPLS (no impact on IPv6)

IPv6 Provider Edge Router (6PE) over MPLS (no impact on MPLS core)


Native IPv6 MPLS (require full network upgrade)

 Upgrading software to IPv6 Provider Edge Router (6PE) Low cost and risk as only the required Edge routers are upgraded or installed Allows IPv6 Prefix delegation by ISP

- IPv4 or MPLS Core Infrastructure is IPv6-unaware
- PEs are updated to support Dual Stack/6PE
- IPv6 reachability exchanged among 6PEs via iBGP (MP-BGP)
- IPv6 packets transported from 6PE to 6PE inside MPLS


Tools – BGP tunnel

- Service provider can incrementally upgrade PE routers with active customers
- Sites are connected to Dual Stack MP-BGP-speaking edge router
- Transport across the IPv4 core can be any tunneling mechanism

BGP tunnels

Cisco.com

Useful for connecting IPv6 PE devices over an IPv4 only core.

Presentation_ID

IPv6 Tunnels & Native Case Study

Cisco.com

• ISP scenario

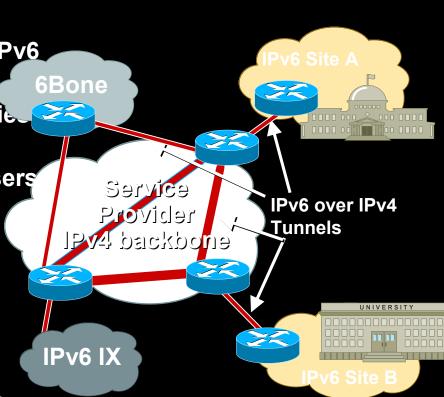
Configured Tunnels or Native IPv6 between IPv6 Core Routers

Configured Tunnels or Native IPv6 to IPv6 Enterprise's Customers

Tunnels for specific access technologies eg. Cable

MP-BGP4 Peering with other 6Bone users

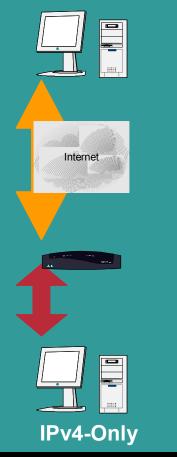
Connection to an IPv6 IX


6to4 relay service

• Enterprise/Home scenario

6to4 tunnels between sites, use 6to4 Relay to connect to the IPv6 Internet

Configured tunnels between sites or to 6Bone users


ISATAP tunnels or Native IPv6 on a Presen Gampus © 2002, Cisco Systems, Inc. All rights reserved.

Use the most appropriate

Tools – Translation

IPv6 Enabled

Tool of last resort

- Allows for the case where some components are IPv6-only while others are IPv4-only
- Pay attention to scaling properties
- Same application issues as IPv4/IPv4 translation

Stateful Translation Mechanisms

Cisco.com

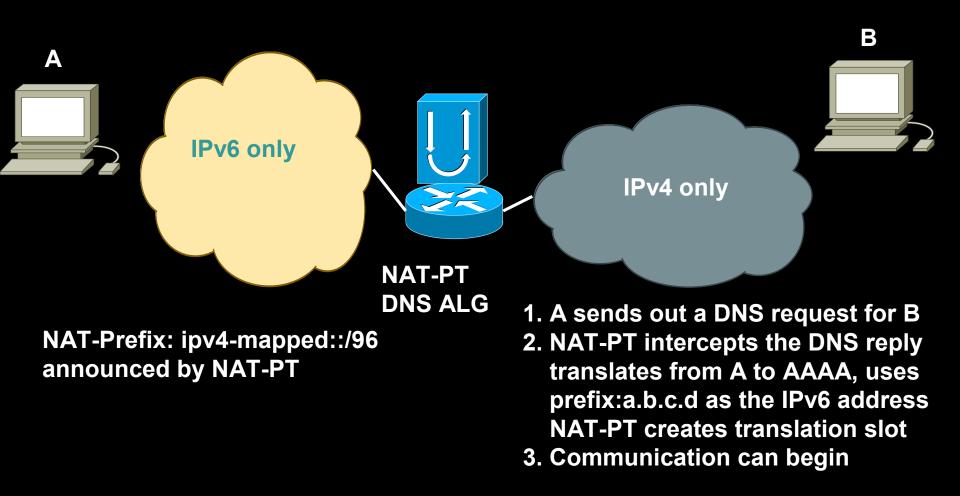
• NAT-PT

Address & protocol translation

• TRT

Transport layer relay

Socks


Application layer gateway

IGMP / MLD proxy

Joins opposing groups & maps addresses

NAT-PT

Stateless Translation Mechanisms

Cisco.com

• SIIT

Address & protocol translation

• BIS

Augmentation between IPv4 stack & device driver

• BIA

Supports IPv4 apps over IPv6 stack

Translation

- May prefer to use IPv6-IPv4 protocol translation for: new kinds of Internet devices (e.g., cell phones, cars, appliances) benefits of shedding IPv4 stack (e.g., serverless autoconfig)
- This is a simple extension to NAT techniques, to translate header format as well as addresses

IPv6 nodes behind a translator get full IPv6 functionality when talking to other IPv6 nodes located anywhere

they get the normal (i.e., degraded) NAT functionality when talking to IPv4 devices

drawback : minimal gain over IPv4/IPv4 NAT approach

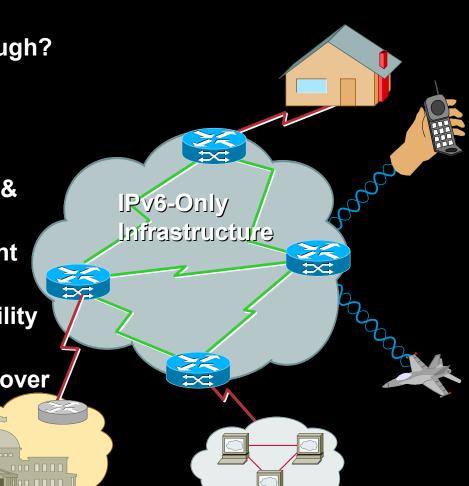
Native IPv6-only Infrastructure?

Application focus

Is the IPv6 traffic important enough?

Worldwide DNS Root not yet reachable via IPv6

Requires


Full Network upgrade (software & potentially hardware)

Native IPv6 Network Management Solutions

Enhanced IPv6 services availability Multicast, QoS, security,...

Transport IPv4 through tunnels over IPv6

IPv4 traffic requirements

Native IPv6 over Dedicated Data Links

Cisco.com

 Native IPv6 links over dedicated infrastructures ATM PVC, dWDM Lambda, Frame Relay PVC, Serial, Sonet/SDH, Ethernet

No impact on existing IPv4 infrastructures Only upgrade the appropriate network paths IPv4 traffic (and revenues) can be separated from IPv6

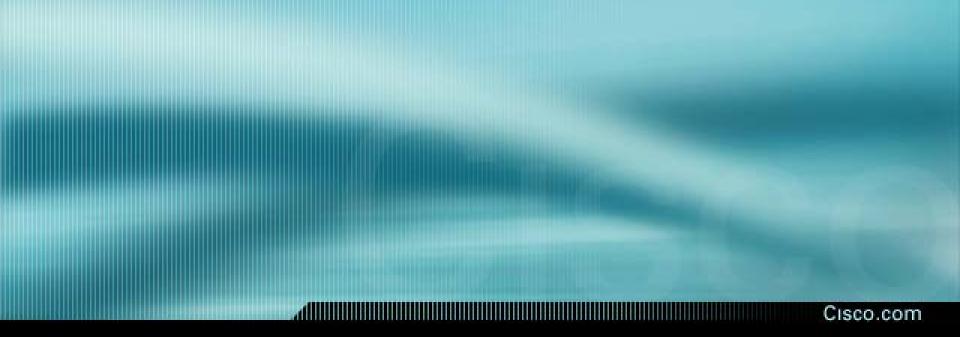
Network Management done through IPv4 for now

Tools – Services

Cisco.com

• DNS

DNS-ALG in NAT-PT distorts perception Referral chain consistency with resolver Remember glue & reverse records for IPv6


• SMTP

Create MX records for both IPv4 & IPv6 on dual-stack

DNS failure on AAAA may cause mail requeue

• DHCP

Spec about finished; products will follow Prefix allocation current driver

Summary

- Transition will not be a quick process
- Tool set goal : minimize interdependence
- Dual-stack & Tunneling before Translation most difficult cases caused by IPv6-only
- Recognize environment characteristics
- Applications will drive deployments

_____Cisco.com

For More Information

- http://www.ipv6forum.com
- http://www.ipv6.org
- http://www.cisco.com/ipv6
- http://www.microsoft.com/ipv6
- http://www.6bone.net

For More Information

- http://www.ietf.org/html.charters/ipngwgcharter.html
- http://www.ietf.org/html.charters/v6opscharter.html
- http://playground.sun.com/ipv6/
- http://www.6bone.net/ngtrans/

For More Information

BGP4+ References

RFC2858 Multiprotocol extension to BGP RFC2545 BGP MP for IPv6 RFC2842 Capability negotiation

RIPng RFC2080

Other Sources of Information

Books

IPv6, The New Internet Protocol by Christian Huitema (Prentice Hall)

Internetworking IPv6 with Cisco Routers by Silvano Gai (McGraw-Hill)

and many more... (14 hits at Amazon.com)