

Operational Feedback to IP Equipment Vendors

Vijay Gill

vijaygill9@aol.com

NANOG 26, Eugene, OR October 26,2002

Audience

- Targeted at vendors of IP equipment used by ISPs
- Telecom Meltdown
- Went From
 - Damnit. how many more core router startups can there be? F!@#\$g half my email box with every type of tree, bush, shrub, and fruit.

-Dave Cooper (1999)

- To
 - The unemployment office only gives money, not options.

-Bill Fumerola (2001)

- Targeted at ISPs
 - The CAPEX Hammer
- Where the problems are
 - Networks cost a lot to run
 - Need to focus on reducing Capital and OPEX
 - Security

- We can only squeeze costs so far
 - Bandwidth and hardware costs are more elastic
- Human cost remains constant
- Need more robust software and hardware
 - Excessive complexity isn't going to get us there
- Each incident costs money
- Chart on right shows some vendors are more expensive (OPEX)

Hosts (For Comparison)

Count (+ maintenance)

NOC/Network				
Problem Area	Count			
Router	186			
Switch	92			
Circuit	88			
Internet Routing	54			
Host	37			
Other	25			
Subtotal	481			

NOC/Internet Access				
Problem Area	Count			
Hardware	123			
Software	44			
Network	19			
Performance	12			
Subtotal	198			
GRAND TOTAL	679			

Top 5 Router Issues

Most Common Prob/Res Types

NOC/Network: 373 tickets				NOC/Internet Access - 189 tickets					
Problem	Tickets	Problem Type	Count	×	Problem	Tickets	Problem Type	Count	×
Router	152	Card/Blade	28	18%	Hardware	118	Host Unreachable	52	44%
Switch	92	Errors	16	17%	Software	42	File System Capacity	10	24%
Circuit	47	Hard Down	25	53%	Network	18	Connectivity	7	39%
Host	41	Host Unreachable	15	37%	Perform:	11	Streaming	7	64%
Internet I	32	Packet Loss	13	41%					
Other	9	Tools	3	33%			<u> </u>		
		Resolution	Count	z	30)		Resolution	Count	7.
Router	152	Replace Equipment	36	24%	Hardware	118	Reboot	31	26%
Switch	92	Replace Equipment	32	35%	Software	42	Clear file system	11	26%
Circuit	47	Replace Equipment	7	15%	Network	18	No action taken	345	22%
Host	41	Host Problem	13	32%	Perform:	11	No action taken	4	36%
Internet I	32	Modify Routing	9	28%					
Other	9	Host Problem	2	22%					

NOTE: All maintenance tickets have been deducted from the above problem and resolution types.

Internal Resources

Cost Per Bit – Major Components

Historical and forecast market price and unit cost of Transatlantic STM-1 circuit (on 25 year IRU lease)

Source: KPCB

Hardware - General

- Power metering of light-levels on interfaces
 - Very useful operationally
- Protect Flash cards
- Good Stats
 - Need to grab
 - CPU, temperature, fan speed, memory usage
 - > High watermarks on queues
 - 5 minute EWMA a random number for microbursts

Control Plane

- Protect the control plane
 - On average, about 2 parity related crashes a day
 - No ECC, no go for ATDN
- Prioritize Hellos
 - Heartbeat hellos
 - Slave takeover from master
 - IGP Hellos over LSAs etc
 - Do not induce further churn at any cost
 - We can live with micro-loops
 - Not so with self-reinforcing oscillatory behavior
 - Exponential backoff on SPF etc.

- All Maintenance Summary
- Normalized problem management tickets
- Type of maintenance

> Internal: 49%

> External: 51%

- Impact
 - > Completed with impact: 6%
 - Completed without impact: 92%
 - > Cancelled: 2%

Software

- Convergence speed
 - Clock turns off when packet forwarding correctly starts
 - > Time must include FIB updating
 - Consolidate next-hops
 - Mapping of prefixes to oIF
 - > Router or interface crashes
 - Instead of walking FIB to update each individual prefix
 - Update a pointer
- Jitter protocols
 - Introduce fairly large quantities of jitter into routing protocols
 - Update timers, hellos, timed floods etc.
 - Synchronization is bad
 - Don't particularly care to see timed spikes on routers

- Load-share (per flow basis)
- Salt the src/dst/port hash
- Why
 - With a deterministic hashing algorithm
 - > Every time traffic is split
 - The hash-space is halved for upstream routers
- Maintenance windows often have near-simultaneous reload of routers
 - Randomly salt

Traffic Matrix

- Proper capacity planning needs good statistics
- Not most vendors strong point
- Flow data interpretation complicated for building POP-POP flows
- Need Router-Router (BGP next-hop) based Flow data

Security and Flow data

- Console IP interfaces should have separate RIB
 - No way to talk to console in-band
- Packet Filtering should work
 - At Line rate
 - > At 40 bytes
 - With Flow data
- We use cflowd extensively
- Real output packet filters
 - Inverting and applying all incoming interfaces is not useful

- Routers are optimized for traffic through the hardware
 - Not traffic for the hardware
- Designing a cost efficient router implies:
 - Cross-sectional bandwidth capacity dominates budget
 - No cost-effective way to engineer a router that can absorb and usefully process data at the rate it can arrive

Hardware – Queuing of Control Plane Traffic

- This one should be easy to get but surprisingly few can do it
- Simple, unambiguous parsing
 - Filter on stuff that is for the router
 - What I deem interesting goes onto the high priority queue
 - > Everything else goes onto the low priority queue
- Simple discriminator function/ACL etc.
- Rate-limit on low priority queues
- Apply discriminator on linecard/forwarding engines BEFORE it hits the brain
- Why?

AOL TW 17 10/28/02 10:41

Outside Context Problem

- Attackers are seizing this weak link as a point of attack
 - DoS attacks targeted at infrastructure are increasing
 - Hackers will evolve Have seen port 179 attacks already (and MSDP can't be far behind)

Problem

- Need some way to disambiguate between invalid and valid control traffic (e.g. BGP updates)
- Rate-limiting on control traffic is not sufficient
 - > Enough false data will swamp legitimate data
 - Connection flaps/resets
 - Need to focus on BGP (MSDP)— other traffic is not control, thus will not cause control plane issues

- IGP traffic can be safely blocked
- MD5 on neighbors will not prevent the Router CPU from being inundated with packets that must be processed

Solution

- Short term Dynamic Filtering on the line cards
- Long term outboard processing of SHA1/HMAC-MD5
- This is very long term indeed not necessarily solving a known problem today (replay or wire sniffing)
- Vendors have to implement priority queuing for control traffic from line cards to control plane

Dynamic Filtering

- Filtering on the 4-tuple
 - Use the BGP 4-tuple to dynamically build a filter that is executed on the line card or packet forwarding engine
 - Packets destined for the router are matched against the filter
 - If the packet matches the filter
 - Place into the high priority queue
 - > Else
 - Place into the low priority queue

- On average, will need to try 32000 times to find correct 4-tuple
 - Attacker resources will need to be on average 32000 times greater to adversely affect a router
 - Cost of attacking infrastructure has risen
 - Cost to defender minor
 - Each configured BGP session already has all the state needed above to populate the filter
 - Can use the same solution to protect against MSDP spoofing
- Implementation (sort of)
 - In JunOS (apply-path)

- Stability is most important
 - Only place the high priority queue filter for a neighbor once the session is established
 - Before session is established, place neighbor packets in low priority queue
 - We'll take time for a session to come up over knocking existing sessions down

Future Goals

- Use BGP over SSL/TLS (will prevent replay attacks)
 - Can use the filter list along with SSL/TLS to reduce number of valid packets making it to the RP CPU to a comfortable number
- Vendor Feedback
 - Please ensure that your TCP/IP stack chooses randomly when picking a source port (currently most do not)

The BGP TTL Security Hack (BTSH)

- BGP TTL Hack
 - Uses TTL as input into the discriminator
 - http://ietfreport.isoc.org/ids/draft-gill-btsh-00.txt
 - Set TTL to 255
 - Most BGP sessions are between direct neighbors
 - Only allow BGP packets with TTL in 254-255 range
 - Reduces attack diameter dramatically

- Questions?
- Acknowledgements
 - Alan Nabors, John Ranalli and the Netops NOC
 - IA, ATDN engineering and coders