Fast Reroute A high availability addition to MPLS

Shankar Rao Sohel Ahmed Owest Communications

> **Richard Southern** Juniper Networks

Agenda

- ✓ Overview of MPLS FRR what problem is this technology solving, and how does it work?
- Drivers for Qwest to implement FRR –alternative options evaluated, and why FRR?
- Real-world scenarios experienced on the Qwest network – did FRR help?
- Operational lessons learned, what can we do better?
- Conclusions

Fast Reroute What is it?

Planning for a failure (things to consider)

- Control plane failures
 - ✓ Graceful restart
 - Implemented in each protocol
- Z Data plane failures
 - L2 based solutions (for comparisons sake)

APS

Link bundling /aggregated sonet or Ethernet

- MPLS+RSVP Choices for protecting a LSP
 - Secondary LSP
 - Secondary Standby LSP
 - *∝***Fast reroute**

Recovery Speed (Secondary LSP)

Secondary and Standby

Secondary: Ingress LSR needs to signal new LSP when primary LSP fails

Patherr and resvtear unicast to ingress LSR

- IGP needs to change nexthop @ ingress LSR
 May be additional built in delays to optimize SPF runs
- Standby path is pre-computed

Saves CSPF run

- ✓ Sum of delays is in 100^smS to 1S range
- Packet loss may occur until LSP is redirected by ingress LSR

Example Secondary LSP

Recovery Speed (FRR)

- Each node along the LSPs path takes care of protecting the LSP. Request is made by including detour and fast-reroute objects in RSVP PATH messages
- Can be used with other protection methods since it's a quasi-L2 solution, including secondary LSPs

Recovery Speed (FRR) - continued

- Delay in switching to FRR is limited by the failure detection delay and the propagation time to update the forwarding table of the change
 - Typically in the 10^s to 100^s of mS window (w/o F-FRR)
 - Sub 50mS numbers are possible if the other reroute labels are preloaded in the forwarding plane
 - **∞** 50mS times are necessary for VoIP signal sync frames
 - Vendor specific implementation details may add extra time to the switch-over depending on IGP
- Packet loss is minimized to the 'unlucky few' that were transiting the link during the failure

FRR mechanisms (detour)

Model Construction March Marc

Each LSP has its own detour LSP

✓ Uses combined link and node protection

FRR Detour (link and node)

FRR mechanisms (facility backup)

« Facility backup (N:1)

- Cone or more LSPs share a common detour
- Link protection (NHOP) (Juniper, Cisco, Avici, others?)
 - Merge Point (MP) is at the next hop, but on a different link
 - Protecting against multiple link outages
 - This is where most development time has been as ISPs have an immediate need to protect critical links
- Mode protection (NNHOP) (Cisco)
 - MP is at the next next-hop
 - This may be the next step, however graceful restart might work better here

FRR link-protection bypass LSP

FRR using Node Protection

Complexity Comparison

Secondary

- Signaled by ingress LSR only, protects path
- # + additional constraints can be applied
- additional management and planning
- \measuredangle switch is done at the ingress router only

∝ FRR

- Each LSR along the path protects configured links
- Imited path constraints (can include BW, hold and setup priorities, links to avoid etc.)
- # + no additional path definitions configuration

Maintaining the protected LSP properties

- ✓ Secondary can...
 - ✓ make all the same BW requests as the primary
 - maintain CoS requirements
 - remain up even after primary path recovers
- FRR is intended as a short term fix
 - Builds on the existing LSPs properties since majority of the LSP will remain in place
 - BW may be shared in many-to-one (Facility) backup
 - Forward packets only until primary can handle the problem (may include a switch to secondary)

Fast Reroute Why on the Qwest network?

06/05/02 Gary Waldner

Recovery Requirements

- CC48 SONET APS protected backbone circuits initially
- Partial mesh of OC192 unprotected wavelengths today, therefore need for protection at higher layer
- Higher layer protection must be comparable to SONET protection (~50ms)
- Voice/ATM traffic on IP network demanding stringent SLA's for network recovery (<100ms)</p>
- Other SLA's RTT < 100ms, Availability 99.999%, Packet Loss < 0.001%, Jitter < 5ms</p>
- Need to protect (sub-second) against both link and node failures

Options

IGP tweaks

- <u>http://www.nanog.org/mtg-0202/ppt/cengiz.pdf</u>
- Convergence times
 - Convergence as fast as today's technology allows, ~5secs.
 - Can be improved to sub second with enhancements to ISIS specification

Graceful Restart Mechanisms (NSF)

- Offers protection against RE/RP failures (by keeping such failures control plane transparent), but
- Link failures/flapping links still a problem

Options

Other HA mechanisms such as Stateful failover

- RE/RP failures are transparent to peers/neighbors (sessions remain up)
- Link failures/flapping links still a problem
- Zeployed/Field Tested implementations non-existent

- Both link and node protection possible
- Promise of recovery times in order of 10's of ms, however,
- Proprietary implementations
- New technology, burden of operationalizing

Fast Reroute Operational considerations

- Good (or not so good) feature link fails, traffic is re-routed over backup, primary re-optimized, all happens transparently
- No special MPLS FRR monitoring needed (in theory) – rely on existing NMS to flag link/node failures, FRR keeps traffic moving
- MPLS control plane anomalies harder to detect primary/backup paths setup transparently, backup paths only used for short periods of time
- Worst case if FRR croaks, IGP always available as backup

Operational Concerns

- Zetecting LSP Primary/Detour Outages
 - SNMP/Syslog tools proactive monitoring of data/control plane
- Traffic Management
 - ✓Not actively used

Trouble Shooting RSVP/LSP's

- Additional control plane protocols to be learned and understood
- Change in data plane forwarding

Bug report/analysis and testing

Extensive testing to ensure that worst case does not get worse (i.e. IGP routing as fallback works)

Keep changes transparent (to the extent possible) to existing troubleshooting methods

Fast Reroute Real-world Scenarios

MPLS FRR Topology LSP: chi-core-01 to ewr-core-01

M160

Both Primary and Detour LSPs are riding on same fiber path

Qwest.

Spirit of Service

Primary LSP: chi-core-01 to ewr-core-01 01, ewr-core-

29

6

2

Troubleshooting Tips

- Show mpls lsp name <lsp name>extensive
- Show rsvp neighbor
- Show rsvp session name <lsp name> detail
- Show rsvp interface detail
- Show mpls interface
- Show log <mpls-tracefile>
- Show log <rsvp-tracefile>

Fast Reroute Lessons Learned/Conclusions

Conclusions

- Sub-second protection for both control/data plane failures necessary
- FRR provides sub-second recovery from data plane failures today
 - ISIS convergence can be improved, but best times (today) are in order of multiple seconds
 - FRR works, but
 - Requires implementation of a new technology
 - Zacks widely-deployed interoperable implementations
 - Can use enhancements such as detection of data plane "liveness", SRLG, QoS/TE conformance etc.
 - Manageability improvements (if doing lot of traffic management)

Conclusions

- HA mechanisms such as Graceful Restart/Stateful failover are interesting for control plane protection
- Keep it simple (as much as possible) by relying on pure IGP metrics, no complex traffic management
- Use TE features only when needed for example severe outage scenarios where real-time traffic must be protected (modeling required)
- IGP convergence timers must also be improved, since FRR protection is only on the core
- Tread carefully control protocol scaling limits not completely known

Thank you!