Coarse-Grained Traffic Analysis in ISP Networks

A Router-Based Approach

Christian Martin Verizon

Traditional ISP Traffic Analysis

- Resource Utilization
 - CPU, port utilization, memory
- Traffic Characterization
 - Flow information (src prt, dst if, src addr, etc)
 - What kind of traffic is flowing across my network? In what ratios and magnitudes? How do new application phenomena affect traffic dynamics (eg. Napster, Everquest)
- Network Performance
 - RTT, Packet Loss
 - Are there problem areas in my network that I should be addressing?

Modern ISP Traffic Analysis

- Node-Node coarse-grained volumetric statistics.
 - Traffic Engineering, metric assignment, billing
- ISP<->ISP and ISP<->{ISP_i/ISP_{i+1},..., ISP_n} traffic volumes
 - Peerseeking
- Traffic characterization
 - Topological and routing data correlation
 - Need routing table to really understand traffic patterns.
 Otherwise all we know is *what*, not *why* or *how*.
- Network Performance
 - Temporal Analysis (Jitter, convergence times, etc)
 - SLAs
- This analysis is hard!

Modern Traffic Analysis (cont'd)

- Traditional Analysis is denotative (literal)
 - The information we gather has little to no implied meaning
 - Bits/sec on this interface
 - Flows/sec of http between these IPs
 - In order to infer meaning, we need one or more heuristics
 - One such heuristic is the routing table

Modern Analysis is connotative (implied)

- The information we need to gather has lots of implied or inferred meaning
 - Traffic between POP-A and POP-B
 - Relative increase in ICMP echo-reply traffic between two ASNs

Routing Data As a Heuristic

- Modern Analysis requires an understanding of the routing state of a network
 - Otherwise, the empirical data has no meaning (connotation)
- Gathering routing information offline and then correlating it to traffic data:
 - Difficult (sensor fusion)
 - Costly (high speed interfaces not cheap)
 - Disruptive (need to insert probes)
 - Inaccurate in the temporal dimension (export)
- The router has all the 'information' that is needed to perform the analysis in real-time

The Router as a Traffic Analyzer

- Modern routers forward data using advanced hardware
 - Legacy software routers were smart, but slow
 - Original ASIC technology was dumb and fast
 - Newer ASICs/PPEs are becoming smart and fast
- Forwarding engines are derived from routing data
 - While programming the FIB, we may be able to store additional heuristics
 - Who (Next Hop), What (POP, peer, cust), When (timestamp), Where (AS, router), How much (volume), Why (is my policy accurately applied?)
 - Create buckets, match flags, and increment counters
 - Store in memory for SNMP/other processing, rather than costly export to spinning media for analysis

Applicability

Coarse-Grained Node-to-Node Analysis

 How much traffic of a certain class to a certain class, derived from BGP (or other) information

Peer-Seeking

 How much traffic to and from a set of AS-PATHs, with additional flags if needed

Fine Grained Analysis (future)?

- Real-time analysis of data patterns, router-based heuristics, inferencing, reacting?
- Anything that requires routing information for correlation
- Match BGP info and port (NNTP between a set of AS's)

- Here, a node is a router, or cluster, or POP, or an entire AS
- Use BGP Next-Hop or AS-PATH to define class
- Program FIB with class, increment when a match occurs
- Can be done for source match or destination match
- Simple way to derive arbitrary demand matrices

Peerseeking

 Determine heuristically (or thru flow info) what ASNs you are interested in
 Create AS-PATH matches, bucketize and count
 Netflow processing for AS information is expensive
 Must Sample - sampling accuracy is questionable

Fine Grained Analysis

- With new imbedded hardware being developed, much of our analysis will be performed on the router
 - Similar to Aggregated Netflow
- With real time data and robust inferencing software, we may have:
 - Anomaly detection (DoS Attack)
 - Traffic pattern recognition and adjustment
- Sy offloading analysis to hardware in the router, we ensure temporal accuracy and reduce the system processing and storage burden on offline tools
 - Data is transient and self-similarities exist. Why store it?

Caveats

BGP Asymmetry

- Intradomain should not be a problem
- Interdomain is a problem, particularly as connectivity becomes rich
- More useful for transit buyers looking to offload some transit expense
- No a priori approach to rule setting
 - Need to know what to look for beforehand
- Requires hardware/software upgrades
 - Ask your vendor when/where this capability is supported

Conclusion

Routers have all the data in real time
 ASICs/PPEs are advancing along with traffic volume on (most) networks

- Inline probes are intrusive and expensive
- Offline collection and analysis of large data sets is costly and difficult
- Features are available today on modern hardware
- Complimentary to flow-based tools, and of course, MIB-II and ifMIB polling